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ABSTRACT

In recent decades, archives have seen a rapid change in the media used to store sound informa-

tion, and many of these media are rich in obsolete material that risks becoming unusable due to

aging. Therefore, it is necessary to digitize sound documents in order tomake them durable over

time. However, during the digitization process, errors such as applying an incorrect equaliza-

tion curve or playing back the tape at the wrong speed can lead to the acquisition of inauthentic

material.

Thiswork focuses on studying the detection of possible errors due to incorrect equalization curve

settings and tape playback speed during the transfer of material from analog to digital, verifying

if and how it is possible to detect themusingmethods specific to Artificial Intelligence (clustering

and classification).

The results of this research demonstrate that these algorithmsmay offer good precision in detect-

ing errors and have the potential to automate the verification process, ensuring the preservation

of valid information for a longer period of time, but before they can be used in a real-world sce-

nario, they must be further improved.





TABLE OF CONTENTS:

1 MPAI 3

1.1 Context-based Audio Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Centro di Sonologia Computazionale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 CSC Methodology as a Standard for Audio Preservation . . . . . . . . . . . . . 8

2 Managing digital audio 9

2.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Pulse Code Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 A case study: Audio Tapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Data Analysis 15

3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Pretto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Berio-Nono . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Comparision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 A step further . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 An Audio Analyser implementation 33

4.1 Find the Irregularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Classify the Irregularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 The research future 37

Bibliography 39

i



ii



A study on Equalization Curve Detection in Audio Tape Digitization process using AI

I want to make one minor quibble about the idea that there’s Mathematics behind

anything: there is no math behind anything. Math is one of the languages that we

use to describe the world, computational languages are also languages that we use to

describe the world.

—Allen Downey, Scipy Conference, 2015

This thesis is written as a narrative that aims to investigate the possibility of recognizing specific

anomalies of magnetic tapes that are created during the reproduction phase through machine

learning, and to study how to integrate the models into a software workflow. The need for a

standard that brings order in the current scenario of software that makes use of AI is presented

in Chapter 1, while Chapter 2 describes the possibilities of representing a signal in a digitalwayby

presenting the particular case of the preservation of magnetic tapes. In addition to representing

the tapes digitally, metadata linked to the specific medium must also be included. Chapters 3

and 4 build on the knowledge presented in the previous chapters to conduct experiments using

machine learning algorithms for clustering and classification.

The analysis section contains the results of the experiments carried out to test themodels. The re-

sults are presented in the form of tables and graphs, which are explained in the text. The python

notebooks used to generate the results are available in the project repository on GitLab, where

also a usage guide is available and theAPI documentation. Anhtml version of the thesiswith inte-

grated notebooks and API guide is hosted at https://matteospanio.gitlab.io/mpai-audio-analyser.

Conventions used

Bibliographic references are indicated by a specific number in square brackets like [7], which

is then mapped in the bibliography. If the reference is inside a paragraph and is the first time

it appears in the text, the number in square brackets is preceded by the author name as this

Downey [7].

The references to figures, tables and code listings are indicated by the number of the object:

• this is a reference to a table, Table 3.11,

• this is a reference to a figure, Fig. 3.6,

• this is a reference to a code section, Listing 4.1

Inter-chapter references are composed by the title of the section referred and the page number

specification between round braces, like this: MPAI (page 3).

The target reader of this thesis is expected to have prior knowledge of machine learning algo-

rithms for clustering and classification, while aspects of signal processing and audio analysis are

briefly introduced in the text to provide context.

TABLE OF CONTENTS: 1
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CHAPTER

ONE

MPAI

The nice thing about standards is that you have so many to choose from.

—Andrew S. Tanenbaum

In recent decades, artificial intelligence (AI) has emerged as a transformative technology with

a wide range of applications in various industries. The use of AI in everyday-use software has

become increasingly common, and its impact is felt across a wide spectrum of human activities.

AI technologies have been used to improve the efficiency of industrial processes, enhance the

accuracy of medical diagnoses, optimize the performance of financial markets, and even help

us to make better decisions in our personal lives. However, the rapid proliferation of AI-based

software applications has led to a range of challenges that must be addressed if the full potential

of this technology is to be realized.

One of the key challenges that arise from the proliferation of AI-based software is the lack of a

consistent and standardized development methodology. Each software project tends to estab-

lish its own development methodology, which creates a lot of confusion on the general scene for

interoperability between various software. In fact, the development of AI-based software is a

complex and challenging process that requires a deep understanding of the underlying technolo-

gies and a rigorous approach to the development process. This often leads to a situation where

each software project has to start from scratch in establishing its own development methodol-

ogy, which can lead to significant delays, increased costs, and reduced interoperability between

different software applications.

The lack of standards is not only a problem for software developers but also for end-users who

are often unaware of the underlying technology and its limitations. End-users expect AI-based

software to be reliable, accurate, and safe, but without a standardized development methodol-

ogy, there is no guarantee that these expectations will be met1 . This creates a significant risk for

end-userswhomayunwittingly rely onAI-based software applications that are notwell-designed

or well-tested, leading to potential safety hazards, loss of privacy, and other negative outcomes.

To address these challenges, there is a need for a standard to establish some firm points in the

development of AI-bound software. A standard would help to provide a clear and consistent

framework for the development of AI-based software applications, ensuring that they are reli-

able, accurate, and safe for end-users. It would also help to reduce the time and costs associated

1 Unfortunately, another very common problem is the fact that there is still a lot of misinformation regarding the

world of AI. Too often, there is a tendency to “humanize” machines, expecting them to be able to produce judgments

autonomously, to process thoughts. One aspect to consider would be to adequately inform the general public, in this way

a proper use of the tools provided by experts in the field would be spread, generating greater overall satisfaction and

awareness of the tools being used.

3
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with the development process by providing a common set of guidelines that can be used across

different software projects. In addition, a standard would help to promote interoperability be-

tween different software applications, allowing for greater collaboration and innovation in the

AI industry.

Overall, the need for a shared view of things in the development of AI-bound software is clear,

it would be a concrete improvement in a world where the coming years are expected to be per-

vaded by the growth of smart assistants, self-driving vehicles and who knows what else. By ad-

dressing these challenges, a standardwould help to unlock the full potential of AI-based software

and ensure that it is used in a way that benefits society as a whole.

TheMPAI project has been proposed as a solution to this problem, with the aim of developing AI-

enabled data coding standards2 . The MPAI -Moving Picture, Audio and Data Coding by Artificial

Intelligence - project proposes a range of standards for products, applications and services that

make central use of Artificial Intelligence. The project comprehends many areas affected by AI

as health data coding, context-based audio enhancement, connected autonomous vehicles, AI-

enhanced video coding, multimodal conversation, server-based predictive multiplayer gaming,

and many more. The MPAI standards are designed to be modular and flexible, and are based on

entities called AIFs (AI-Frameworks) that are themselves constituted by AIMs (AI-Modules). Each

AIM is designed to perform a specific AI task. The AIF provides a framework for organizing and

combining these AIMs to perform more complex tasks. MPAI provides the semantic and syntax

of input and output data between each AIM and the AIF, defining software pipelines based on

data sharing and exchange3 .

In conclusion, the MPAI project is a significant step forward in the development of AI-bound

software standards. Its modular and flexible approach provides a powerful framework for de-

veloping customized solutions for a wide range of applications.

As it stands to reason, MPAI therefore establishes a series of technical specifications which must

then be implemented and become part of a common ecosystem as specified below:

• MPAI provides Technical, Conformance and Performance specifications

• These are implemented

• MPAI verifies implementations via its Performance Assessors

• The MPAI Store incorporates the verified implementation and distributes it to end users.

Specifications are issued in the form of AI Framework (AIF) like the one in Fig. 1.1 and those AIF

are composed by many basic processing entities called AI Modules (AIM).

2 MPAI was born in September 2020 from the ashes of the MPEG project, which was closed in June of the same year.

The idea behind the establishment of MPAI is that the experience of MPEG has seen the birth of standards that have

revolutionized the audio and video industry of the last thirty years, allowing easy intercommunication between various

producers. With the advent of AI, we are witnessing rapid changes accompanied by general chaos in the background.

MPAI’s objective is to bring order to this scenario by proposing a common way of addressing current issues.
3 The concept is really similar to a pipeline: the standard defines what can enter and what can exit the pipeline, but

it does not specify how the data is processed (a implementation guide is provided but it is not mandatory). This is left to

the discretion of the implementer, who can choose the best algorithm for the task at hand.
4 This figure refers to the MPAI-AIF v1. At the time of writing, the MPAI-AIF v2 is under development and it should

introduce a new layer all over the AIF adding security support to MPAI-AIF v1. Since the discussion of the MPAI-AIF

specifications is outside the scope of this section and version 2 does not differ much from version 1, the figure illustrates

the MPAI-AIF v1 for the sake of simplicity.

4 Chapter 1. MPAI
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Fig. 1.1: MPAI-AIF Reference Model4

MPAI has many lines of standard development, but, at the moment, only few of them are under

active development. Table 1.1 shows the current status of the MPAI standardization lines.

Table 1.1: MPAI Standardization Lines

Standard Status Description

MPAI-AIF Active Artificial Intelligence Framework

MPAI-AIH Active Artificial Intelligence for Health data

MPAI-ARA Avatar Representation and Animation

MPAI-CAE Active Context-based Audio Enhancement

MPAI-CAV Connected Autonomous Vehicles

MPAI-CUI Active Compression and Understanding of Industrial Data

MPAI-EEV End-to-End video coding

MPAI-EVC Active AI-Enhanced Video Coding

MPAI-GSA Integrative Genomic/Sensor Analysis

MPAI-MCS Mixed-Reality Collaborative Spaces

MPAI-MMC Active Multimodal Conversation

MPAI-NNW Neural Network Watermarking

MPAI-OSD Visual object scene description

MPAI-SPG Active Server-based Predictive Multiplayer Gaming

MPAI-XRV XR Venues

Each of these lines has its own use cases, which are the applications that the standard is intended

to support. Of course, due to the dimension of the project, different research groups are working

on different lines.

5
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1.1 Context-based Audio Enhancement

The Context-based Audio Enhancement (MPAI-CAE) is a collection of 4 use cases that share com-

mon characteristic concerning the improvement of the user experience for audio-related appli-

cations. [4]

The 4 use cases considered are:

1. Emotion Enhanced Speech (EES). In the field of speech synthesis the next step is tomake the

speech sound more natural including the emotional aspects of the speech. The implemen-

tations of this standard can be used to create virtual assistants that can express emotions

and feelings in a more natural way.

2. Audio Recording Preservation (ARP). The conversion from analog to digital audio is a pro-

cess that can introduce artifacts in the audio signal and must take in consideration also

some aspects of the physical support where can be found annotations and other informa-

tion. This standard provides a structured way to preserve the original audio signal and the

information related to it.

3. Speech Restoration System (SRS). The purpose of this use case is to restore damaged Au-

dio Segments containing speech from only one speaker (the audio can be fully or partially

damaged).

4. Enhanced Audioconference Experience (EAE). This use case improve auditory experience

in an audioconference, in fact often the undertandability of the speech in a conference can

be compromised by the presence of background noise or a not optimal environment. This

standard provides a way to improve the audio quality of the conference.

1.2 Centro di Sonologia Computazionale

Over the past two decades, Centro di Sonologia Computazionale (CSC), the Sound andMusic Com-

puting laboratory of the Department of Information Engineering at the University of Padova, has

been actively engaged in research on the preservation of historical audio documents. Given the

multifaceted challenges associatedwith this task, amultidisciplinary approach has been adopted

to fully leverage the vast potential of this documentary heritage. The methodology developed by

CSC over the years has focused on both active preservation of historical audio documents and

enabling access to them, with particular emphasis on analog magnetic tapes. The efficacy of this

methodology has been tested and validated through various international projects undertaken

in partnership with esteemed European audio archives, including the Paul-Sacher-Stiftung in

Basel, the Fondazione Arena di Verona, the Historical Archive of the Teatro Regio di Parma, and

the Luigi Nono Archive in Venice. [2]

Unlike passive preservation, which pertains to safeguarding the material structure of the docu-

ments, active preservation aims to preserve their content in digital form. This involves digitizing

the tapes and ensuring safe transfer of identical copies from one digital carrier to another. Sev-

eral factors must be considered during the digitization process, including the material structure

of the object, which encompasses the physical-chemical components, technology, production sys-

tem (acoustic, electroacoustic, magnetic), and audio and playback format (such as speed and

equalization). Additionally, the primary information, which is the recorded audio signal, and

6 Chapter 1. MPAI
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secondary informations, such as notes on the box, noise signals characterizing the recording

system, alterations of the carrier (corruptions, splices, signs), and other metadata, including the

history of the document transmission (storage, duplication), must be preserved. All these meta-

data must be stored alongside the digital audio in preservation copies, which are organized data

sets that group all the information (data andmetadata) represented by the source document and

are stored and maintained in several directories of the archive data center. [14]

The proposed methodology seeks to enhance the reliability and scholarly suitability of digital

preservation copies by taking the process a step further. Specifically, the software tools devel-

oped emphasize the “textual” aspects of a sound document, treating the A/D transfer as a philo-

logical operation of restitutio textus. This approach is particularly important in the realm of

electroacoustic music on analog magnetic tapes. During A/D transfer of an audio document, dig-

itization errors related to speed, equalization, and track numbers can occur, but the loss of use-

ful ancillary information can also result in the creation of document “witnesses” with limited

philological value. These document witnesses are non-identical digital audio documents with

variants or differences in comparison to the original analog tape. Although they may represent

a rough approximation of the original, these variants generate “noise” in the textual critic’s task,

rendering them imperfect and of poor quality. Therefore, the proposed methodology seeks to

address these issues and producemore reliable and accurate preservation copies by focusing on

the philological aspects of sound documents.

The methodology developed by CSC is based on the following principles:

1. convert analog magnetic tapes to digital audio files;

2. capture a video recording of the playback head of the tape recorder;

3. listen to the audio recording and take notes on the presence of anomalies or irregularities

in the audio signal;

4. analyze the video recording to detect and locate the presence of irregularities in the audio

signal;

5. collect and store the metadata related to the audio document.

It may be pertinent to inquire whether it is truly essential to automate the process of digital

acquisition of tapes, given that an expert operator is expected to be capable of appropriately

configuring the playback parameters for individual tapes, based on their known equalization

curves and speeds. However, the obstacle lies in the fact that tape rewinding is frequently a pro-

tracted operation, and if this task is carried out in a consecutive manner, there exists a potential

for errors to occur owing to fatigue or distraction. Additionally, the complexity of the problem

exceeds superficial appearances since a single tapemay containmultiple recordings of disparate

materials, each with their own unique velocity and equalization curve.5

5 It is common practice to reuse the same tape for multiple, disconnected instances in order to optimize its usage, and

it may even be used by different individuals, rendering the content highly variable. For instance, it is not uncommon for

a tape to be utilized for recording only a fewminutes of audio, leaving the majority of the reel unused. Subsequently, on

separate occasions, the tape may be reused, possibly played in reverse to avoid having to rewind it to the first available

moment. Additionally, when only limited materials were available and the sole tape had only a fewminutes of available

recording space, the playback speed was set at a lower level to extend the available tape space. This set of recording

practices results in a highly delicate and intricate digitization process for tapes, which requires meticulous attention

to detail. Automating this process thus enables an expedited workflow while applying necessary corrections, where

needed, in a precise and reproducible manner.

1.2. Centro di Sonologia Computazionale 7



A study on Equalization Curve Detection in Audio Tape Digitization process using AI

1.2.1 CSC Methodology as a Standard for Audio Preservation

The methodology developed by the Centro di Sonologia Computazionale (CSC) for the preserva-

tion of historical audio documents has been recognized for its effectiveness and reliability. As

a result, it has been adopted by the MPAI-CAE Audio Recording Preservation (ARP) use case for

implementation in the laboratory. This implementation will provide a structured approach to

preserve historical audio documents, ensuring their reliability and scholarly suitability while

also enabling access to them.

The standard includes various stages of processing, such as digitization of the analog audio sig-

nal, detection of irregularities, restoration of audio files, and packaging of the final output.

Specifically, given the following inputs:

• A Preservation Audio File, which is a digitized copy of the original audio recording.

• A Preservation Audio-Visual File produced by a camera that records the playback head of

the magnetic tape recorde.

The ARP-AIF produces Preservation Master Files (a copy of the input) and Access Copy Files,

which contain the processed and restored audio signal. A detailed description of the ARP-AIF

can be found in Fig. 1.2.

Fig. 1.2: ARP, AI Framework

One of the key components of theMPAI-CAEARP standard is the Audio Analyser, which is respon-

sible for detecting irregularities in the digitized audio signal and extracting the corresponding

audio files. The Audio Analyser performs this task by comparing the digitized audio signal with

a reference signal to identify any deviations in terms of speed or equalization.

In this thesis, the main focus is the implementation of the Audio Analyser, and in particular, it

has been taken in consideration the use ofmachine learning algorithms to determine the original

equalization and speed of the audio tape. The input of the system is the digitized audio signal.

The output of the system is a set of parameters that describe the equalization and speed of the

original recording, which are used to restore the audio files to their original quality in next AIMs.

8 Chapter 1. MPAI



CHAPTER

TWO

MANAGING DIGITAL AUDIO

Digital audio is like painting with numbers.

—Kim Cascone

According to physics, sound is a traveling vibration, i.e. a wave that moves through a medium

such as air. The soundwave transfers energy from particle to particle until it is finally “received”

by our ears and perceived by our brain. The two fundamental parameters to describe a sound

are the amplitude (also known as volume) and the frequency (the measure of the number of

oscillations of the wave per unit of time). [15]

Recent technological growth has led to a marked improvement in the speed and density per-

formance of circuits and memories, making it possible to digitally represent large amounts of

data, including acoustic signals. Specifically, the digitization of sound has led to a series of trans-

formations since the 1980s, which have affected both professionals and music users. From the

introduction on the market of the first CD for commercial use in 1982 to today, we have wit-

nessed the birth (and end) of numerous digital media (Digital Audio Tape, MiniDisc, USB, DVD,

HDD, SSD, Cloud). [3]

This has allowed the treatment and numerical processing of digital signals to take on a clear

preponderance over the analog one: a sequence of numbers representing the amplitude of the

signal at precise and discrete instants of time is muchmore precise and reliable than an approx-

imation captured on a magnetic tape. [9] Therefore, it was necessary to design systems capable

of converting analog sound into a succession of values that describe the various parameters of

sound such as pitch, intensity, and timbre. Observing the Cartesian representation of a sound

wave in the time domain, it can be seen that the ordinate axis describes the amplitude (intensity),

and the abscissa axis highlights the frequency at which the wave moves (pitch). The conversion

of sound from analog to digital, therefore, takes place on the two aforementioned levels: we will

speak of sampling for the frequency and quantization for the amplitude. The timbre is instead

strictly related to the representation of the sound in the frequency domain, and it can usually be

analyzed by applying a Fourier Transform to the digitized signal.

9
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2.1 Sampling

Sampling is the discretization of the analog signal over time. [9]

In other words, sampling is used to convert the time-varying continuous signal into a discrete

sequence of real numbers. [8] The interval between two successive discrete samples is the sam-

pling period (T ). We will speak of sampling rate (sf = 1

T
) as an attribute describing the sampling

process.

Since the representation of the signal is given by the variation of the amplitude over time, sam-

pling corresponds to the periodic identification of the presence of the signal on the abscissa axis.

In detail, to be able to correctly describe a signal, it is necessary to sample at least one point in

the positive phase and one in the negative phase, otherwise we would incur the loss of essen-

tial values for recreating the wave, and in the interpolation phase we would create signals not

originally present or others would be lost.1

Obviously the shorter the time intervals between one sample and the next, the more similar to

the original analog the sampled sound will be. At the limit, for infinitely short time intervals,

the digital signal will correspond to the real one. Generally speaking, it has been observed that

to avoid the loss of information, the sampling must take at least two samples for the partial

maximum frequency present in the signal (sf = 2× freqmax).
2

Fig. 2.1: a Analogic signal. b Quantization. c Sampling. d Quantized and sampled.

1 The so-called phenomenon of aliasing or subsampling.
2 This rule has been defined by theNyquist-Shannon sampling theorem in 1949, even if it would bemore correct to call

it the Whittaker-Nyquist-Kotelnikov-Shannon (WNKS) theorem, according to the chronological order of those who have

proved increasingly generalized versions of it . In any case, it follows that the standard sampling frequency is 44100 Hz,

i.e. double 22050 Hz, which is the maximum frequency audible to the human ear (Lombardo and Valle [9])

10 Chapter 2. Managing digital audio
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2.2 Quantization

Quantization is a critical step in the digital signal processing of audio signals. It involves dis-

cretizing a continuous-time signal, such as an audio waveform, by mapping each sample value

to the nearest value in a set of discrete values int the y-axis. The number of bits used to repre-

sent each quantized sample determines the resolution of the quantization process. The higher

the number of bits used, the more accurate the approximation of the original signal will be.

In digital audio, the most common bit depth for quantization is 16 bits per sample, which pro-

vides 216 possible levels of amplitude for each sample, in a range that varies from −215 to 215 (1

bit used for the sign). This level of precision is sufficient for most audio applications, including

music recording and playback. However, higher bit depths are used for specialized applications,

such as audio mastering, where the goal is to preserve the maximum amount of dynamic range

and detail in the original recording (standard bit encoding are: 16, 24 and 32).

Quantization can introduce errors into the audio signal, known as quantization noise. This noise

is the difference between the original signal value and its quantized approximation. The amount

of quantizationnoise depends on thenumber of bits used for quantization, with higher bit depths

resulting in lower levels of quantization noise. [9] It isworth noting that the choice of the number

of bits used for quantization can have a significant impact on the overall audio quality. If the bit

depth is too low, the quantization error can introduce audible artifacts, such as distortion or

noise. On the other hand, using a high bit depth can increase the size of audio files and require

more processing power to handle the data.

The Signal-to-Quantization-Noise-Ratio (SQNR) is a measure of the quality of the signal based on

the quantization noise that has been introduced during the digitization process: it measures the

ration between the original signal power and the max amplitude that can be achieved by the

quantization noise.

2.3 Pulse Code Modulation

The final step of digitization, which incorporates the processes of quantization and sampling, is

the generation of the code associated with the sample.

Digital audio signals are commonly encoded using PCM, with the linear pulse code modulation

(LPCM) being the most widely used form. In LPCM, the continuous analog signal is first sampled

at a specific rate, resulting in a discrete set of samples. These samples are then quantized into a

series of numerical values that can be represented using a fixed number of bits, usually ranging

from 8 to 32 bits per sample. The number of bits used per sample determines the dynamic range

of the digital signal, with a higher number of bits resulting in a greater dynamic range and better

signal-to-noise ratio.

To illustrate how PCM encoding works at a bit level, consider the following example. Suppose

we have a PCM-encoded audio signal sampled at a rate of 44.1 kHz and quantized with 16 bits

per sample. This means that for every second of audio, there are 44,100 sample points, with each

sample represented by 16 bits. Each sample value represents the amplitude of the audio signal

at that particular moment in time.

2.2. Quantization 11
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For instance, let’s take a sample of the PCM-encoded audio signal at a specific time point, which

has a value of 0110001011010101 in binary, or 16309 in decimal. This value represents the am-

plitude of the audio signal at that time point, with higher values indicating a louder sound and

lower values indicating a quieter sound. The PCM-encoded signal can be decoded back into an

analog signal by reversing the quantization and sampling process. In Fig. 2.2 you can see the

graphical representation of PCM: the Roman numerals indicate the succession of samples, and

for each sample (of 3 bits) there is a binary number which represents its amplitude.

PCM encoding is used in many digital audio formats, including theWaveform Audio File Format

(.wav) and Audio Interchange File Format (.aiff). These formats use PCM encoding with various

bit depths and sampling rates to store and transmit digital audio data. PCM encoding is also

used in digital communication systems, such as digital telephone networks and digital television

broadcasting. [3]

Fig. 2.2: Pulse Code Modulation

2.4 The frequency domain

In addition to representing sound in the time domain, it is also possible to represent its prop-

erties in the frequency domain. This system was studied by Charles Fourier, who defined the

process of converting from time domain representation to frequency domain representation,

which is called the Fourier Transform (FT). When the starting signal is in digital format, the Dis-

crete Fourier Transform (DFT) can be applied. The underlying idea behind the DFT is that the

spectrum is sampled in frequency just as the digital waveform is sampled in time.

Mathematically speaking, the relationship betweenN samples in the time domain x0, x1, ..., xN−1

and N complex numbers of the Discrete Fourier Transform X0, X1, ..., XN−1 is described by the

formula:

Xk =

N−1
∑︁

n=0

xne
−ik 2𝜋

𝑁
n k = 0, 1, ..., N − 1 (2.1)

where i is the imaginary unit, e
2𝜋

𝑁 is the N -th root of unity, and k is the frequency index. [18]

Essentially, the complex numbers Xk represent the amplitude and phase of different sinusoidal

components of the input signal xn. The calculation of the sum requires O(N2) arithmetic opera-

tions, and to optimize the algorithm’s performance, the Fast Fourier Transform (FFT) was devel-

oped [5], which calculates the same result with a number of operations of O(Nlog(N)), making

the summation calculation much faster. In fact, the DFT and FFT algorithms are an essential

element in digital signal analysis. [9]

12 Chapter 2. Managing digital audio
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2.5 A case study: Audio Tapes

Fig. 2.3: Studer A807 Reel to Reel Tape Recorder.

The invention of magnetic tape for audio recordings dates back to 1928, when Fritz Pfleumer, a

German inventor, created this innovative technology. Reel-to-reel audio tape recordings quickly

became the primary recording format used by professional recording studios until the late 1980s,

resulting in numerous sound archives preserving a large number of audio tapes.

However, like any analogue carrier, magnetic tape is also subject to physical degradation, which

can be slowed down but not entirely prevented. Therefore, digitization becomes essential to

prevent degradation that can render the information inaccessible. Additionally, magnetic tape

is closely linked to its playback device: the reel-to-reel tape recorder. Before pressing the play

button, the machine must be configured correctly to play back the recordings on the tape, and

any error may cause audio alteration and the loss of the preservation copy’s authenticity. [10]

Twomain parameters must be configured for optimal playback: reel replay speed and equaliza-

tion.

Regarding the equalization parameter, during the recording process, the source signal is modi-

fied by applying equalization that alters the frequency response (application of a pre-emphasis

curve) tomaximize the Signal-to-Noise Ratio (SNR) of the recorded signal. This alterationmust be

compensated for during the reading of the tape by juxtaposing an inverse curve (post-emphasis

curve) to obtain the original audio signal. The main standards adopted are CCIR, also known as

IEC1, mostly used in Europe, and NAB, alternatively called IEC2, mostly adopted in the USA. It is

worth noting that curves of the same standard may differ according to the reel speed.

2.5. A case study: Audio Tapes 13
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As per standard definitions, the equalizations are the product of two curves:

N(DB) = 10 log

(︂

1 +
1

4π2f2t2
2

)︂

− 10 log
(︀

1 + 4π2f2t2
1

)︀

(2.2)

where f represents the frequency inHz, and t1 and t2 are time constantsmeasured in seconds. In

CCIR, the curve shape is solely dependent on the constant t1, while t2 is set to infinity. Moreover,

the time constants alter concerning the tape speed. The equalization and tape speed must be

appropriately set to achieve a flat frequency response. [14]

Often, carriers do not indicate the speed and equalization standards, and lack of documentation

may necessitate the operator to depend on auditory cues. However, previous experiments have

demonstrated that this approach is prone to errors. [14] To avoid subjectivity and potential er-

rors that may compromise the preservation copy’s accuracy, a software tool that can identify the

correct equalization is the solution. This not only aids operators in the digitization process but

also benefits musicologists who can verify the correctness of an unknown provenance digitized

copy and rectify any mistakes if necessary.

14 Chapter 2. Managing digital audio



CHAPTER

THREE

DATA ANALYSIS

Without data, you’re just another person with an opinion.

—W. Edwards Deming

Given the abstractions that allow representing the physical reality of signals in the digital world,

it is now possible to analyze how they are integrated into the data analysis process and the im-

plementation of AI modules within the AIF ARP. As previously mentioned, the central points of

investigation in this thesis are:

• the project for implementing the Audio Analyser AIM within the AIF ARP;

• the study, through clustering and classification, of the possibilities of automating the recog-

nition of errors resulting from incorrect application of speed or equalization filters during

the acquisition of an audio tape.

In this chapter, we are going to evaluate the possibilities and capabilities of automating the de-

tection of such errors based on studies that have been previously conducted on the topic inMich-

eloni et al. [10] and Pretto et al. [14].

One of the fundamental issues is the type of data that needs to be processed. So, before explaining

in detail the procedures used and the results, it is necessary to study a methodology for sound

analysis and understand which representation is most suitable for our purpose. In Rodà et al.

[16], a scheme is provided, whosemain parts are shown in Fig. 3.1, which illustrates the different

phases of sound analysis. A characteristic aspect of this type of data is segmentation, which

involves breaking the original signal into multiple parts. In fact, considering audio files with

a duration of 10 minutes rather than fragments of 10 milliseconds can strongly influence the

results of the investigation1 , especially if the signal being considered is highly variable over

time. Therefore, in addition to the sampling frequency, it is necessary to establish the frequency

at which the signal is analyzed or to establish terms by which to divide the signal into parts in

order to obtain homogeneous events. In any case, the final result is an approximation of the

signal, as each segment must be considered as a “snapshot” at a specific moment of the input,

which is assumed to be constant2.

1 The first option is called long-time analysis, often used to analyze the structure of an entire piece of music or for

signal that don’t vary much over time. In contrast short-time analysis is use where the signal varies quite often. In

addition considering a 10 minute audio file as a whole it would be interpreted as a single sample, while the same file

splitted in 10ms chunkswould generate 60000 samples; since in data analysis the sample sizematters a lot, it is important

to consider the right size of the sample in relation to the quantity of data available.
2 For example, if one considers voice recording, the assumption that the signal is constant is justified by the time

it takes for the body to move the larynx, mouth, and all the other muscles and organs involved in the process, whose

changes are not faster than a few hundred milliseconds, so the signal can be considered constant for a period of time of
about 100-200 milliseconds.

15
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Data Collection Features ExtractionSegmentation Classification
or Clustering

Features Vector Post ProcessingResults

Fig. 3.1: Scheme for sound analysis.

The second really peculiar aspect of audio data are their features, there are many and each one

has its own characteristics. In [16] can be found a detailed description of the most common

features used in audio analysis, but in this thesis we are going to focus only on Mel Frequency

Cepstral Coefficients (MFCCs) which have been used in the studies mentioned above. Just for

general knowledge it is important to say that there exist twomain types of features: spectral and

temporal. The first type is based on the frequency spectrum of the signal, while the second is

based on the time domain. In the case of the spectral features, the most common are the MFCCs.

TheMFCCs relies on a chain of transformations of the input signal: first, the signal is transformed

into the frequency domain, then the frequency spectrum is transformed into a Mel scale, and fi-

nally, the Mel spectrum is transformed into a cepstral domain. Initially, the signal is converted

in the frequency domain via DFT (see The frequency domain (page 12)), then the frequency spec-

trum is converted into the Mel scale, which is a logarithmic scale of frequency correspondant to

the response of humans’ ears to frequency3 :

mel(f) =

⎧

⎨

⎩

f if f ⩽ 1000 Hz

2595 log
10

(︁

1 + f
700

)︁

if f > 1000 Hz
(3.1)

this operation changes the unit of measure of the frequency by applying a filter-bank to the sig-

nal4 , where each filter is centered on a specific frequency and has a width that is proportional

to the distance from the center frequency. So from a smooth spectrum, the signal is transformed

into a series of peaks, each one corresponding to a specific frequency. At this point would be

interesting to separate the Mel spectrum into multiple components: that’s the concept of cep-

strum5. This is a general method to divide the oscillatory-harmonic components (the base sig-

nal) of a sound from its timbric components (the filter-bank). If we think of a signal in the fre-

quency domain as themultiplication of this two components it can bemathematically expressed

as y(n) = x(n) · h(n)where the spectrum y is the resultant from x, the oscillatory-harmonic com-

ponent, and h, the timbric component. [16] A further step can be done due to the logarithmic rep-

resentation of the spectrum, which, thanks to the property of logarithms log(a ·b) = log(a)+log(b),

consents to pass from amultiplication to a sum, then the discrete time cosine transform (DCT) is

3 Long story short: in the occidental music theory system the distance between two octaves is always the double in

frequency of the lower note (A3 = 220 Hz, A4 = 440 Hz, A5 = 880 Hz), but the space between each octave is always

divided linearly in twelve semitones and the human ear perceives these distances as equally distributed. The Mel scale

is a logarithmic scale that tries to reproduce the same perception of the human ear, it applies a filter-bank to the signal

and then it applies a logarithmic scale to the result. The Mel scale is used in audio analysis because it is more similar to

the human perception of sound than the linear scale.
4 A filter-bank is a traditional method for analyzing a signal’s spectrum. It involves using a set of band-pass filters

placed at regular intervals along the frequency axis to obtain the log-energies at the output of each filter. This provides

a general idea of the signal’s spectral shape and helps to minimize any harmonic structure that may exist. [12]
5 This strange name is derived from inverting the first four letter of spectrum: this name reflects that it is the applica-

tion of a transformation (usually the inverse FFT) to the spectrum, also the unit measure passes from frequency (Hz) to

quefrency (seconds).
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applied to the result6 :

DCT(log(|Y [k]|)) = DCT(log(|X[k]|)) + DCT(log(|H[k]|)) (3.2)

where k is the k-th component of the filter-bank.

As result of this operations the direct formula to extract the i-th MFCC is:

Ci =
N
∑︁

k=1

Yk cos

[︂

i

(︂

k −
1

2

)︂

π

N

]︂

i = 1, 2, . . . ,M (3.3)

where Y1, . . . , YN are the log-energy outputs of amel-spaced filter-bank andN is the total number

of channels in the filter-bank.

In [10], it has been shown that certain portions of audio are more significant than others. In

particular, it has been noted that different types of silence (i.e., with different signal intensity)

have a good descriptive capability of the considered signal to identify the correct playback speed

and equalization curve. Table 3.1 illustrates the three classes of noise that have been identified

and their intensity in decibels7.

Table 3.1: Noise classes

Class Intensity (dB) Description

A -50 to -63 Noise in the middle of a recording, i.e., silence between spoken words

B -63 to -69 Noise of the recording head without any specific input signal

C -69 to -72 Noise coming from sections of pristine tape

By extrapolating sections of silence with a length of 500milliseconds8 , it was proven that MFCCs

contain sufficient information to train classifiers with accuracy very close to 100%. While in the

study by [14] manually extracting sections of silence was carried out, in this case, a software

was created that is capable of automatically identifying sections of silence and extracting MFCCs

(with the idea of then integrating it directly into the AIF ARP Audio Analyser).

6 The DCT is specific for the MFCCs calculation, the general method to evaluate the cepstrum is based on the inverse

FFT instead.
7 Actually, the intensity value is not exactly absolute, but it could slightly vary depending on the bit depth of the audio

file, which can introduce quantization errors. However, the difference is negligible and the values reported in the table

are correct for the majority of the cases except for the class C, in fact higher bit representaition of the signal have a

higher dynamic range and can reach values under −72 dB (the minimum noise intensity at 16 bit is −96 dB, while at 24

bit is −144 dB).
8 The length of the silence sections was chosen based on the results of the study in [10] and [14]. In those studies

different lengths of silence sections were tested and it was found that longer sections did not enrich the results.
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3.1 Datasets

In [10] the main dataset was artificially generated in laboratory. It was composed by samples

that covered all the combinations of correct and incorrect filter chains that could occur during

the digitization of audio tapes (including only 7.5 and 15 ips speed tapes).

In the current study the starting dataset is the same but includes also 3.75 ips speed. So all pos-

sible combinations for both reading and writing operations are: 3.75 ips with NAB equalization,

7.5 ips with CCIR or NAB equalization and 15 ips with CCIR or NAB equalization (it is not possible

to record or reproduce an audio tape at 3.75 ips with CCIR equalization).

The research so has been done in two phases: first, recreate (and confirm) the study in [10] on

the extended dataset (referred as Pretto or Pretto dataset in the rest of the thesis), and on second

instance, test the trained models on a new dataset (referred as Berio-Nono) generated from real

world data.

Once the audio tapeswere defined, the datawere collected from the digital files using themethod

described in the section above1 (500 ms of silence samples), and then their first 13 MFCCs were

computed. Table 3.2 shows the structure of the datasets. All kinds of noises were extracted from

the audio files to see if any of them carried more information than the others. Of course, a

greater amount of data allows for more coverage of the feature space, but it also increases the

computational cost of the training process.

Table 3.2: Dataset features

Feature type description

label string A string that specifies the equalization curve and speed used in the

recording and reproduction processes2 (e.g. 3C_7N)

noise_type string A, B or C

MFCC1-13 float The first 13 MFCCs of the sample

See also:

The feature extraction process for both dataset can be recreated executing the notebook

data_extraction.ipynb at the thesis’ repository , and can be summarized as follows:

1. execute the scriptnoise-extractor on the audio files to generate a set of samples of 500ms

each labeled with the type of noise contained in the sample (A, B or C);

2. extract the first 13 MFCCs from each sample;

3. save the results as a csv file containing the MFCCs, the noise type and a label that specifies

the equalization curve and speed used in the recording and reproduction processes.

1 A detailed description of how the software to extract silence can be found at An Audio Analyser implementation

(page 33).
2 The labels have been composed by a number that specifies the writing speed (3 for 3.75 ips, 7 for 7.5 ips and 15 for 15

ips), a letter that specifies the writing equalization standard used (C for CCIR and N for NAB), an underscore character, a

number for the reading speed (analogue as writing) and a letter for the reading equalization standard used. For example

the label 3N_7Nmeans that the sample has been recorded at 3.75 ips with NAB equalization curve and reproduced at 7.5

ips with NAB equalization curve.
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3.1.1 Pretto

As already mentioned, this dataset consists of a collection of features extracted from a tape cre-

ated ad hoc at different speeds and with different pre/post-emphasis curves (CCIR or NAB) for

both the writing and reading processes. As explained inManaging digital audio (page 9), a tape

can be recorded and reproducedwith different equalization curves and speeds (3.75, 7.5, 15 ips).

That’s why this dataset was generated, as it contains all possible main combinations of speeds

and equalization curves for the writing and reading processes of the tape. In particular, the tape

is composed of a set of audio extracts, each lasting 10 seconds, and the interval between two

extracts is composed of a 1-second beep sound, 2 seconds of silence, and another 1-second beep.

The audio extracts have been taken from different sources and have been combined as shown

in Table 3.3.

Table 3.3: Audio tape composition

Author Title Duration (s)

Taylor Swift Shake It Off 10

The Weeknd Save Your Tears 10

Richard Wagner Ride of the Valkyries 10

Carl Orff Carmina Burana - O Fortuna 10

Queen WeWill Rock You 10

Eagles Hotel California 10

Bruno Maderna Continuo 10

Bruno Maderna Syntaxis 10

Luciano Berio Différences 10

Bruno Maderna Musica su Due Dimensioni 10

CLIPS project LP1f19bZ 10

CLIPS project LP4m19bZ 10

CLIPS project LP1f20bZ 10

CLIPS project LP4m20bZ 10

CLIPS project LP4m18bZ 10

The eclectic intent is evident: different kinds of music have really different MFCCs (in fact, they

are often used for automatic music genre recognition), so the dataset comprises classical, pop,

and modern music and also speech recordings (CLIPS project has a public corpus of speech

recordings).

Fig. 3.2 shows the distribution of the dataset taking into consideration different subsets based

on noise type. It is noticeable that the dataset is not balanced: tapes recorded at a higher speed

tend to have more noise samples when reproduced at a lower speed3 . This imbalance could

influence the training process. In fact, we will have a heterogeneous distribution of coverage of

the feature space. For example, there are only 6 instances of noise A recorded at 7.5 ips with

CCIR equalization curve and reproduced at 15 ips with NAB equalization curve, while there are

181 instances with the opposite label (7.5 ips CCIR recorded and 15 ips NAB reproduced). Unless

3 Of course this isn’t so inespected: reproducing a tape with a lower speed than the one used for recording it, the tape

will play slower resulting to have longer noise section of the same intensity as the original ones. It is like stretching the

tape: the speed of the tape is slower, the pitch is lower (the frequency has been altered), but the intensity of the sound

cannot be alterated since it is interested only by the y axis.
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the class distribution tends to stick to the same point of the feature space, this could lead to poor

generalization of the model.

3N
7C

7N
15

C
15

N

255 104 122 63 62

546 248 279 106 102

599 237 252 88 94

1316 613 612 225 273

1309 534 559 210 250

Whole dataset

45 2 9 1 0

25 42 38 30 6

20 47 41 24 17

404 181 229 54 103

260 181 154 108 54
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210 32 36 10 11

521 59 69 35 33

579 41 59 30 37

911 313 216 43 115

1049 260 275 60 46
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0 70 77 52 51
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Fig. 3.2: The dataset distribution by noise type, y labels regard the recording processes, x labels
regard the reproduction processes.

Table 3.4 shows a summary of the dataset with some statistics: labels are 25 because each speed

can be recorded and reproduced with two different equalization curves except for 3.75 ips, so

each tape can be recorded or played with one of 5 configurations: 3.75 ips NAB, 7.5 ips NAB, 7.5

ips CCIR, 15 ips NAB, 15 ips CCIR.

Table 3.4: Pretto Dataset summary

Feature value

Samples 9058

Noise types 3 (A, B, C)

Equalization curves 2 (NAB, CCIR)

Writing speeds 3 (3.75, 7.5, 15 ips)

Reading speeds 3 (3.75, 7.5, 15 ips)

Number of labels 25

Samples of noise type A 2075

Samples of noise type B 5050

Samples of noise type C 1933
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3.1.2 Berio-Nono

This dataset is composed by the digitization of real case scenarios tapes of unpublished works

by Luciano Berio and Luigi Nono, in which the tape has been recorded and reproduced with the

same equalization curve and speed. Once obtained the digital files, they have been used as input

for the pipeline described above. The samples extraction procedure generated 12202 samples,

and the features extraction process generated 12202 samples of 13 MFCCs each. The features in

the dataframe are the same as in Table 3.2.

Fig. 3.3 shows the distribution of the dataset, which is unbalanced, but no evident pattern can be

inferred from the distribution since the files were generated from a variable number of different

equalized tapes: 4 tapes were recorded at 7.5 ips in NAB format, 6 tapes were recorded at 7.5 ips

in CCIR format, 5 tapes were recorded at 15 ips in NAB format, and 3 tapes were recorded at 15

ips in CCIR format. The tapes considered for this dataset had a much longer duration (about half

an hour each) compared to the Pretto dataset, which had audio tracks of only 10 seconds.

7.5 CCIR 15 NAB 15 CCIR 7.5 NAB
Equalization parameters

0

1000

2000

3000

4000

5000

Co
un

t

Distribution of the labels in the Berio-Nono dataset
noise_type

A
B
C

Fig. 3.3: The dataset distribution by noise type, each column represents a different equalization
curve and speed used in the recording and reproduction processes.

Table 3.5 shows a summary of the dataset with some statistics. The labels are 4 because only the

correct equalization curves and speeds have been applied in the acquisition step, so each tape

can be recorded or playedwith one of the following 4 configurations: 7.5 ips NAB, 7.5 ips CCIR, 15

ips NAB, 15 ips CCIR. In this case, the extraction software found a noticeable quantity ofC silence.

It is not uncommon to find a great amount of unused tape; however, in this situation, it emerges

that the characterization of the noise is missing a 4th kind of noise: when the acquisition process

starts, there are a few seconds where the tape is not moving, and neither is the pristine tape.

Therefore, the recorder is capturing noise from the environment, usually lower than −72dB. In

this case, this noise from the 4th kind was included in the C noise type, omitting the lower limit

for C noise.
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Table 3.5: Berio-Nono Dataset summary

Feature value

Samples 12202

Noise types 3 (A, B, C)

Equalization curves 2 (CCIR or NAB)

Writing speeds 2 (7.5, 15 ips)

Reading speeds 2 (7.5, 15 ips)

Number of labels 4

Samples of noise type A 1231

Samples of noise type B 1796

Samples of noise type C 9175

3.1.3 Comparision

Themain goal of the entire analysis is to be able to recognize the pre/post-emphasis equalization

curves applied to the tape. On the basis of the data we have, the most interesting experiment is

therefore to create a classifier trained on the Pretto dataset, i.e. the one built ad hoc and which

includes all possible cases, to recognize the examples taken from real cases of the Berio-Nono

dataset. To do this, it makes sense to visualize how the data is distributed in space. It is clear that,

given the premises, the Berio-Nono dataset should cover (approximately) a subset of the space

of the other dataset, but this is not the case. Different factors could the cause of this results:

• the different nature of the tapes in the two datasets, while in Pretto there are short music

and speech samples (10 seconds), in Berio-Nono the musical events last for minutes

• the machine used to acquire the tapes has to be recalibrated periodically, it could be that

the conditions of the machine were not the same during the acquisiotion of the samples

Anyway it is interesting to observe that the noise classes are well recognizable along the x axis,

this means that, even if the Berio-Nono dataset is shifted along the y axis in respect to the Pretto

dataset, there are evident analogies between the two datasets, while there are groups of samples

really far from the others which are probably outliers (a further analysis is needed to confirm

this hypothesis, but it is not the purpose of this work).

Principal component analysis

The plots have been generated transforming the 13 MFCCs into 2D using the principal compo-

nent analysis (PCA) algorithm. The PCA algorithm is a linear dimensionality reduction tech-

nique that uses singular value decomposition of the data to project it to a lower dimensional

space [11]. At each step, the algorithm choise the axis that maximizes the variance of the

projected data, and then it projects the data onto that axis. The algorithm is repeated until

the desired number of dimensions is reached. This method gives the possibility to visualize

complex distributions in a 2D space, anyway this kind of visualization could lead to wrong

considerations due to the fact that we are cutting part of the informations.
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Fig. 3.4: The features space of the two datasets, each point represents a sample, the color repre-
sents the noise type and the shape represents the dataset (Pretto or Berio-Nono).
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3.2 Clustering

Note: Clustering results can be reproduced executing the equalization_clustering note-

book in the notebooks section of the thesis’ repository, where a detailed written and graphic

explanation of the code for the process is provided.

To evaluate the quality of the data and the feasibility of the classification task, the dataset has

been clustered using the K-Means and Hierarchical clustering algorithms as in [10].

As a measure of the quality of the clustering, the V-measure has been used. The V-measure is a

measure of the similarity between two data clusterings, and it is defined as the harmonic mean

between the homogeneity and completeness of the clustering. Homogeneity is the ratio between

the number of pairs of samples that are in the same cluster in both data clusterings and the total

number of pairs of samples that are in the same cluster in the first data clustering. Completeness

is the ratio between the number of pairs of samples that are in the same cluster in both data

clusterings and the total number of pairs of samples that are in the same cluster in the second

data clustering. [11]

About the cluster scoring

There are many metrics to evaluate the quality of a clustering, anyway not always are all

applicable to the specific clustering task. For example, the Davies-Bouldin index is a metric

that evaluates the quality of a clustering by measuring the distance between clusters and the

distance between points in the same cluster. This metric is not applicable to the equalization

classification task since the clusters are often overlayed. In addition is useful to observe that

in this specific case the ground truth is know in advance, so all themetrics that take advantage

of this information are a good choice. Lastly the V-measure returns a value in the range [0, 1]

which make really easy to treat the results as if they were the accuracy of a classifier. For a

more detailed explanation of the metrics see this article.

Since the data classes are overlayed the clustering and algorithm evalutation have been per-

formed on different subsets of the dataset structured as shown in Table 3.6. For each subset has

been specified the original dataset, the clustering task, the speeds used and the number of clus-

ters1 , i. e. if the speed is “7.5 ips, 15 ips”, it means that all the considered classes have been

extracted from recorded and played back tapes at 7.5 ips or 15 ips, regardless of the equalization

(i.e., 7N_7N, 7C_7C, 7C_7N, 7N_7C, 15N_15N, 15C_15C, 15C_15N, 15N_15C).

The subsets A and B were constructed based on the datasets built in [10], where classification

and clustering were only performed on data with the recording speed equal to the playback

speed. The study demonstrated that, in general, machine learning algorithms achieve similar

performance in identifying equalization curves at a single speed. This thesis aimed to go beyond

that by introducing the E dataset, which combines samples from both subsets A and B, yielding

encouraging results. Furthermore, the clustering of recording speeds is addressed by subsets C,

D, and G, a problem not tackled in either [10] or [14].

1 BothK-Means andHierarchical clustering algorithms require thenumber of clusters as input, in this case thenumber

of classes to be clustered.
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There isn’t a subset of Berio-Nono dataset to evaluate the clustering of equalization classes

(wrong/right equalization) because the tapes have been recorded and played back at the same

speed.

Table 3.6: Clustering Datasets

Dataset Original dataset Clusters Speeds # Clusters

A Pretto Right/Wrong equalization 7.5 ips 2

B Pretto Right/Wrong equalization 15 ips 2

C Pretto Speed 7.5 ips, 15 ips 2

D Pretto Speed 3.75, 7.5 ips, 15 ips 3

E Pretto Right/Wrong equalization 7.5 ips, 15 ips 2

F Berio-Nono Speed and equalization 7.5 ips, 15 ips 4

G Berio-Nono Speed 7.5 ips, 15 ips 2

The results of K-Means andHierarchical clustering are shown respectively in Table 3.7 and Table

3.8. The scores higher than 0.5 are highlighted in bold.

Table 3.7: K-means Clustering results

Dataset Noise A Noise B Noise C All

A 0.2 0.086 0.589 0.166

B 0.747 0.413 0.046 0.301

C 0.09 0.015 0.145 0.008

D 0.172 0.177 0.123 0.084

E 0.377 0.215 0.527 0.194

F 0.176 0.108 0.22 0.156

G 0.056 0.008 0.043 0.024

Table 3.8: Hierarchical Clustering results

Dataset Noise A Noise B Noise C All

A 0.079 0.178 0.972 0.338

B 0.948 0.567 0.304 0.514

C 0.27 0.119 0.116 0.05

D 0.243 0.535 0.222 0.094

E 0.453 0.395 0.760 0.268

F 0.233 0.145 0.233 0.163

G 0.099 0.03 0.043 0.025

Subsets A, B, E have been used to evaluate the clustering of equalization classes (Fig. 3.5). Over-

all the clusters resulting by analyzing only tapes recorded and played at the same speed (dataset

A and B) gave better results, from this it can be inferred that MFCCs describe in a quite good

manner the difference between correctly equalized and non-correctly equalized tapes. The situ-

ation changeswhen clustering of wrong or correct equalization is performed on different speeds
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(dataset E2), in this case the results are not so good. This latter fact is much more evident in the

clusterization of subset F,where the clusters should highlight both the equalization and the speed

of the tapes.
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Fig. 3.5: Clusters distribution from dataset A and B. While considering only one speed at a time
(7.5 ips or 15) the clustering performance is better, the dataset union generates instead more
confusion.

The clustering results are not homogeneous over the different datasets, but, looking for trends, it

can be said that, in general, Hierarchical clustering overperforms K-Means and when one algo-

rithm gives an acceptable result also the other one does. Another fact is that good results came

across different kind of noises, but the same noise also gave really bad results for other datasets,

e. g. Noise C for dataset A and B: in the first one the score was 0.972 with Hierarchical clustering,

while in the second one it was 0.304 with the same algorithm. From this fact can be inferred that

for a effective classification of the tapes it can be helpful to use different kind of noise, and when

an algorithm gives a bad result, it can be useful to evaluate it over another noise.

Another fact is that the results were badwhere speed clustering was involved, this is a confirma-

tion over previous studies, but should make us think about the possibility to use other features

to cluster the tape’s speed. MFCCs are a good choice for equalization clustering, but they are not

2 Before the actual subset E, composed only by tapes recorded and played back at the same speed (7.5 and 15 ips), a

preliminary study has been performed on the dataset union, i. e. all the tapes recorded and played back at different

speeds, where the results were much worse than the ones obtained in dataset E. Due to drastically unuseful results the

dataset E has then been resized to its actual shape.
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so good for speed clustering, so it would be interesting to find other features that can be used to

cluster the tapes based on their speed.

3.3 Classification

Note: Classification results can be reproduced by executing the

equalization_classification notebook in the notebooks section of the thesis’ reposi-

tory, where a detailed written and graphic explanation of the code for the process is provided.

As for clustering analysis, the classification task has also been performed on different subsets

of the datasets. The classification has been carried out using the K-Nearest Neighbors (KNN),

Support Vector Machines (SVM), Decision Trees (DT) and Random Forest (RF) algorithms. The

first three methods have already been used in previous investigations, while in this study, the

Random Forest is introduced.

To evaluate the performance of the classification algorithms, the accuracy score has been used,

which is the ratio of the number of correctly classified samples to the total number of samples.

About the accuracy scoring

The disadvantage of using the accuracy score is that it is insensible to heavily unbalanced

dataset. For example, if in a classification task, 99% of the data belongs to class A, and 1% of

the data belongs to class B, if the classifier puts all B istances in A, the accuracy will return a

score of 0.99 (almost perfect classification) but, in reality, the classifier put everithing in only

one class (so it is completely useless).

The classification has always been performed tuning the hyperparameters of the model using a

grid search with cross-validation at 5 folds on 80% of the selected dataset. Once the parameters

have been tuned, the model’s performance is tested over the remaining 20% of the data.

In summary, the datasets are listed in Table 3.9. Since those datasets are used to train classifica-

tion models, they are all subsets of the Pretto dataset, which comprehends more cases of wrong

and correct equalizations and speeds.

Table 3.9: Classification Datasets

Dataset Speeds Equalization Classes

H 7.5 ips Mixed and correct 4

I 15 ips Mixed and correct 4

J 7.5 ips correct 2

K 15 ips correct 2

L 7.5, 15 ips Mixed and correct 2

The results obtained from perform classification over the 20% test data of each dataset subset

are reported in Table 3.10, Table 3.11, Table 3.12 and Table 3.13.
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The classification results show that all the models have very good performance on the test data,

with accuracy scores ranging from 0.91 to 1.0 depending on the dataset and the algorithm used.

The K-Nearest Neighbors and Support Vector Machines algorithms generally have the best per-

formance, with accuracy scores of 0.98 or higher for all datasets except for Dataset H with KNN,

where the accuracy score is 0.94. The Decision Tree and Random Forest algorithms have slightly

lower performance than KNN and SVM, but still have accuracy scores above 0.9 for all datasets.

Table 3.10: KNN Classification results

Dataset Noise A Noise B Noise C All

H 0.94 0.91 1.0 0.99

I 1.0 1.0 1.0 0.98

J 0.88 0.96 1.0 1.0

K 1.0 1.0 1.0 1.0

L 1.0 0.99 1.0 1.0

Table 3.11: SVM Classification results

Dataset Noise A Noise B Noise C All

H 0.88 0.93 1.0 0.99

I 1.0 1.0 1.0 0.99

J 1.0 1.0 1.0 1.0

K 1.0 1.0 1.0 1.0

L 1.0 1.0 1.0 1.0

Table 3.12: Decision Tree Classification results

Dataset Noise A Noise B Noise C All

H 0.79 0.71 0.98 0.91

I 0.95 0.92 0.96 0.93

J 1.0 0.87 1.0 0.94

K 0.95 1.0 1.0 0.95

L 0.99 0.93 0.98 0.97

Table 3.13: Random Forest Classification results

Dataset Noise A Noise B Noise C All

H 0.88 0.87 0.99 0.97

I 1.0 0.98 0.96 0.98

J 0.88 0.91 1.0 1.0

K 1.0 0.94 1.0 0.99

L 1.0 1.0 0.99 1.0
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3.3.1 A step further

The studies by [10] and [14] have been confirmed, and also the introduction of speed classifica-

tion (subset L) gave an exciting result, allowing us to make a step further and test the classifica-

tion task on wider datasets:

• study the classification performance on the entire Pretto dataset, giving as input all the

possible combinations of speed and equalization curves (25 classes)

• test the effectiveness of the trained classifiers on Berio-Nono dataset

In this case, based on the previous results, it was decided to use only the KNN and RF algorithms

since the former provided very similar results to those obtainedwith SVM and has amuch lower

training time, while the latter proved to be clearly more effective than a single decision tree and

still has a relatively fast training time.
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Fig. 3.6: Confusionmatrix of the classification of the Pretto dataset for Random Forest algorithm.
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The results of the classification of the 25 possible combinations of tape speed and equalization

curves are once again very promising. Despite a 4-point difference in the third decimal place in

terms of accuracy, both models are capable of correctly classifying most of the samples, even for

the less represented classes in the dataset. The confusionmatrix of the classification of the Pretto

dataset for the Random Forest algorithm is reported in Fig. 3.6. The classification’s accuracy

has decreased by about 10% compared to the results on the subsets of the dataset, but this is

still a very good result, considering that the dataset is much larger and that the classes are not

balanced.

The next step was to use the models trained on the entire Pretto dataset to classify the Berio-

Nono data. In this case, the process was reversed: first, the model trained on the entire Pretto

dataset (using a Random Forest) was evaluated. Then, due to its inefficiency, the possible classes

were limited by considering the subsets shown in Table 3.9 (in this case, returning to SVMs),

and models were evaluated on individual silence classes (only silences A, B, or C). The confu-

sion matrix of the classification of the Berio-Nono dataset using a Random Forest trained on the

Pretto dataset is reported in Fig. 3.7. The results were completely wrong. However, it can be seen

that the equalization curves are not recognized in any way, while the model seems to roughly

recognize the correct speeds (although much less accurately than the models seen previously).

A better result has been obtained using subsets of the Pretto dataset, but of course, limiting the

data also means limiting the possibilities of making mistakes. Classifying 25 categories of data

results in 252 possibilities between input and output, while simply dealing with the equaliza-

tions of a speed (e.g. subset H‘) is equivalent to choosing between 42 possible combinations. It

goes without saying that limiting the scope of action can increase accuracy, but it also reduces

usefulness.

Table 3.14: accuracy test on Berio-Nono dataset using models

trained on Pretto subsets

Train set Algorithm Accuracy Score

whole Pretto Random Forest 0.01

H SVM 0.12

I SVM 0.01

J SVM 0.42

K SVM 0.58

L SVM 0.74

Overall, all algorithms have performed reallywell on the training/validation set, but testing them

on a different dataset did not yield any results. Even though the datasets’ structures and the

analysis objects are the same, amodel trained on one dataset cannot be used to classify the other

one. This fact underlines the insufficient amount of data for the analysis. As seen in Fig. 3.4, the

samples belonging to different datasets are very far apart from each other in space, making it

very difficult to accurately classify Berio-Nono samples withmodels trained on Pretto. The result

might be surprising as both cases involve magnetic tapes with different equalization and speed

curves, but evidently someparameterswere not taken into consideration during data acquisition

or analysis.

It is important to note that combining the datasets together and training a model on the whole
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Fig. 3.7: Confusion matrix of the classification of the Berio-Nono dataset using a Random Forest
trained on the Pretto dataset.
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dataset gives really good results, as those given by the algorithm on a single dataset. In Fig. 3.8,

the confusion matrix of the classification of the tapes from both the Pretto and the Berio-Nono

datasets is reported. Even though the data is not balanced, the model is able to classify the tapes

with good accuracy, revealing once again that a good direction to follow for further analysis

could be to enlarge the dataset.
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Fig. 3.8: Confusion matrix of the classification of the union of the Pretto and the Berio-Nono
datasets.

It would be interesting to conduct an analysis taking into consideration additional tapes and see

the performance of this model on them. If the model is able to classify correctly, then it could

be thought that the data collected is sufficient. Otherwise, it will be necessary to increase the

dataset size until all points in the feature space are considered.
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CHAPTER

FOUR

AN AUDIO ANALYSER IMPLEMENTATION

The purpose of software engineering is to control complexity, not to create it.

—Pamela Zave

Even if the equalization curves classification didn’t give excellent results in the experiments

illustrated atData Analysis (page 15), the Audio Analyser AIM is still a very important component

of the preservation system. The Audio Analyser AIM is the first step of the preservation process

and it is responsible for the detection of irregularities in the audio signal, and the modularity

across the MPAI-AIF model allows us to implement the Audio Analyser even without a properly

working classifier.

Starting from the implementation of the Audio Analyser, based on the technical specifications

provided in [4], the module must be able to1 :

1. calculate the temporal offset between the audio signal and the video signal2 ;

2. detect Irregularities in the audio signal;

3. assign a unique ID to each irregularity;

4. receive an Irregularity File from the Video Analyser AIM and send the identified irregular-

ities to the Video Analyser;

5. extract an Audio File corresponding to each irregularity (both those found in point 1 and

those received in point 3);

6. send the Audio Files and the Irregularity File to the Tape Irregularity Classifier AIM.

Fig. 4.1 provides a general overview of the Audio Analyser.

The operation that this research focuses on is, however, the detection of irregularities in the

audio signal (verification of the equalization curve and the playback speed of the tape), the ex-

traction of the corresponding Audio File, and the creation of the Irregularity File for the Video

Analyzer. The modules developed for this research don’t take in consideration the calculation of

the offset between audio and video signals and don’t receive the Irregularity File from the Video

Analyser.

1 The following steps have not to be strictly followed in this order, neither they have to respect this separation in the

implementation.
2 Since the operation of starting and stopping the playback of the tape and the video recording is subject to latencies

due to the hardware used and is not always engineered in the same way, the time offset between the audio signal and

the video signal can be highly variable.
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Audio Analyser AIM

offset
calculator

irregularities
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audio
irregularity
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Irreg. File

Tape Irregularity
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Irreg. File

Audio Blocks

Preservation
Audio File

Preservation
Audio-Visual File Irreg. File

Irreg. File

Irreg. Images

Fig. 4.1: The Audio Analyser AIM pipeline.

In this case, the implementation of the Audio Analyser has been divided into two parts: the first

part identifies the silence portions in the signal and extracts them into files, while the second

part classifies the pre/post equalization curves and the tape playback speed for each extracted

file. The results of the classification are then saved in an IrregularityFile.

4.1 Find the Irregularities

Before diving into the technical analysis of the software, it is necessary to establish its fundamen-

tal requirements. The software is expected to take an audio file or a folder of audio files as input

and perform the following tasks: 1) extract silence portions from the input file(s), 2) split multi-

channel files into single-channel files, 3) save the extracted silence portions in a folder with an

appropriate naming convention, and 4) create a log file in .json format containing information

about the extracted silence portions.

Given the requirements, it’s trivial to define the main steps of the software:

Listing 4.1: the main steps of the software in pseudo-code

1 function extractNoiseSingleThreaded:

2 Read the input files

3 for each file in input:

4 for each channel in the file:

5 extract the silence portions from the channel

6 save the silence portions in a folder with an opportune name

7 save a json file containing information about the extracted silence 

→˓portions

since input files are independent from each other, the software can be easily parallelized. The

following pseudo code spawns a thread for each input file:

34 Chapter 4. An Audio Analyser implementation



A study on Equalization Curve Detection in Audio Tape Digitization process using AI

Listing 4.2: the main steps of the software in pseudo-code

(parallelized)

1 function extractNoiseParallelized:

2 Read the input files

3 for each file in input:

4 spawn a thread calling extractNoise on the file

5 wait for all threads to finish

6 save a json file containing information about the extracted silence 

→˓portions

7

8 function extractNoise:

9 for each channel in the file:

10 extract the silence portions from the channel

11 save the silence portions in a folder with an opportune name

The audio portions of interest are the usual A, B, and C class silences (seeData Analysis (page 15)),

which are identified as audio signal portions with a noise level below a certain threshold value.

The duration of these portions is fixed at 500 milliseconds.

To identify signal portions with power below the established threshold, a linear scan of the in-

put file is performed with a window of 500 milliseconds. If the maximum power of the signal

contained in the window is lower than the threshold, then the window is considered a portion

of audio signal of interest, the average power of the signal is calculated, and the silence class

to which it belongs is determined. Otherwise, the window is discarded and the scan continues,

moving the seek point to the next sample after the last peak above the set threshold has been

identified.

4.2 Classify the Irregularities

The second part of the software is responsible for the classification of the extracted silence por-

tions. The classification is performed by the classifier obtained by training with both Pretto and

Berio-Nono datasets to have a better coverage of the features space.

Listing 4.3: the main steps of the irregularity classification in

pseudo-code

1 function classifyIrregularities:

2 for each AudioBlock:

3 extract its first 13 MFCCs

4 classify the AudioBlock with the pre-trained classifier

5 map the class to the corresponding IrregularityType

For efficiency reasons, the MFCCs are saved to a DataFrame and then the classification is per-

formed only once on the entire DataFrame, which is much faster than classifying each Au-

dioBlock separately.
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The result of the entire pipeline is an IrregularityFile, which contains the classification of each

individual block of silence extracted from the input audio file. The file is structured as follows:

Listing 4.4: the structure of the IrregularityFile

{

"Irregularities": [

{

"IrregularityID": "00786a08-9020-4a3a-a4ce-6feaec768f3d",

"Source": "a",

"TimeLabel": "00:03:05.462",

"AudioBlockURI": "./AudioBlocks/C_0_17804362_17852362.wav"

},

{

"IrregularityID": "332fdeea-c545-4bb5-afe1-fbbe08fd8207",

"Source": "a",

"TimeLabel": "00:03:05.962",

"AudioBlockURI": "./AudioBlocks/C_0_17852362_17900362.wav"

},

{

"IrregularityID": "ae159ddb-116d-49bb-a9d9-5a1aa3a13c91",

"Source": "a",

"TimeLabel": "00:03:06.462",

"IrregularityType": "ssv",

"AudioBlockURI": "./AudioBlocks/C_0_17900362_17948362.wav",

"IrregularityProperties": {

"ReadingSpeedStandard": 7.5,

"ReadingEqualisationStandard": "IEC1",

"WritingSpeedStandard": 3.75,

"WritingEqualisationStandard": "IEC2"

}

},

...

]

}

as can be clearly seen from the structure of the JSON file, each portion of silence is classified, and

various types of irregularities can occur even within a single audio file. The following modules

after the audio analyzer are responsible for handling this information and making decisions

based on it. For example, if the type of irregularity changes constantly from a certain point

onwards, it can be inferred that the tape contains multiple recordings. On the other hand, if

irregularities occur sporadically, it can be inferred that the tape contains only one recording

and that the rare differences are due to classification errors3 .

3 Clearly, the following modules do not only perform this task, but the one exemplified is the most evident that can be

appreciated from the output of the audio analyzer.
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CHAPTER

FIVE

THE RESEARCH FUTURE

The only true wisdom is in knowing you know nothing.

—Socrates

As often happens in research, this work is part of a wider investigation. In the early stages,

efforts were made to confirm previous research findings, but then, the ability of the starting

data to predict similar but unobserved datawas examined. The Pretto dataset was used due to its

composition, with the hypothesis that it could cover all possible cases to be tested. Unfortunately,

this initial hypothesis was incorrect.

The analysis revealed that the Pretto dataset was inadequate to cover all possible cases, prompt-

ing exploration of additional avenues to gathermore data. One direction that could be taken is to

investigate whether data augmentation techniques could be used to expand the existing dataset.

Techniques such as audio stretching, pitch shifting, and noise injection are commonly employed

to increase the size of datasets in computer vision and speech recognition applications. These

techniques generate additional audio samples that can be used to train machine learning mod-

els, leading to a more diverse audio dataset that better represents the range of audio signals in

the real world.

Another potential factor identified as a possible cause of this insuccess was the analog recorder

used to acquire the tapes. The data was acquired at different times from the same machine,

and it is possible that it was not in the same calibration condition, leading to variations in the

recorded data. These variations could explain why the distribution of the data was dissimilar

and why the data was unable to cover all possible cases.

In light of these findings, it has been realized the need to go back to the drawing board and

rethink the analysis approach. It may be that the Mel Frequency Cepstrum Coefficients used to

describe the audio signals are not sufficient to capture all the nuances of the audio data, other

audio features could be used to better describe the audio signals.

To address these issues, further research was recommended into alternative audio features that

could be used to describe the audio signals, and other machine learning models could be tested

to better predict the audio data. Additional audio data should also be collected to supplement

the existing dataset.

In conclusion, while the initial hypothesis of this work did not hold true, several avenues for

future research were revealed that could lead to better predictions of audio data. By exploring

data augmentation techniques and alternative audio features, and by using a different machine

learning model, the accuracy of predictions may be improved. Collecting more audio data and
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ensuring that the recorder is well calibrated could help to generate a more comprehensive and

representative dataset of real-world audio signals.
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