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ABSTRACT This article describes a novel technology for preserving audio documents archived on open-
reel magnetic tapes forming the core of the Audio Recording Preservation (ARP) international standard.
ARP is part of the Moving Picture, Audio, and Data Coding by Artificial Intelligence (MPAI) Context-
based Audio Enhancement (CAE) standard, adopted by the IEEE Standard Association as IEEE 3302-2022
in December 2022. Leveraging automated Artificial Intelligence (AI) tools, ARP analyzes and extracts
relevant information from digitized audio and video files of the tape’s corresponding digital Preservation
Copy. This process includes identifying speed variations and surface irregularities on the tape, automatically
rectifying errors to generate a restored Access Copy. By utilizing the ARP standard, archives gain a potent
tool for expediting and optimizing the description of the preservation conditions of the tape, as well as
automatically correcting any errors that may have occurred during the digitization process. This technology
offers an efficient solution for managing both small and large collections of digitized analog items, marking
a substantial advancement in the preservation of audio documents.

INDEX TERMS Artificial intelligence, audio documents preservation, audio restoration, IEEE standard,
musicological analysis, MPAI standard.

I. INTRODUCTION
In the summer of 1937, Bird [Charlie Parker’s nick-
name, one of the most important jazz musicians
of the twentieth century - Ed. note] underwent
a radical change musically. He got a job with a
little band led by a singer. . .they played at country
resorts in the mountains. Charlie took with him all
the Count Basie records with Lester Young solos on
them and learned Lester cold, note for note. . .when
he came back, only two or three months later, the
difference was unbelievable. (Gene Ramey [1])

The legendary Charlie Parker stands as a compelling
illustration of how musical documents can shape the course

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Alawneh .

of history. In the early stages of his career, Bird immersed
himself in the records of Lester Young—a well-documented
instance of a virtuoso jazz musician learning from another.
This dynamic exchange gave rise to a new realm of
musical improvisation, building upon the foundation laid
by previous masters. Such creative evolution would have
been inconceivable without easy access to the records of
his predecessor. While the preservation of these cultural
documents assumes paramount importance and continues to
provide incredible opportunities for future generations, it also
poses ongoing challenges and rewards, particularly with the
advent of new technologies rooted in AI.

When preserving cultural audio heritage, it is fundamental
to minimize loss of information. This is particularly signif-
icant when dealing with genres like African American jazz
music, where a traditional score might not exist. Additionally,
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in cases such as Tape Music, where the magnetic tape itself
is an integral part of the artistic work, careful preservation is
essential to safeguard the complete artistic experience.

Unlike recordings of live musicians, Tape Music is not
captured on stage or in the studio for later storage and repro-
duction. Instead, it is composed directly with the assistance of
electronic valves, transistors, and similar devices. TapeMusic
‘‘exists’’ exclusively on magnetic tapes and can be repro-
duced and experienced through loudspeakers. The viability
of these techniques in music composition emerged with the
introduction of magnetic tape sound recording technologies.
These advancements enabled direct human manipulation
and (acoustic-)electromagnetic treatment of the recording
medium. As a result, Tape Music captured the interest of
prominent experimental and avant-garde creative minds in
the mid-twentieth century. Notable figures such as Edgard
Varèse (1883-1965), Olivier Messiaen (1908-1992), John
Cage (1912-1992), Iannis Xenakis (1922-2001), Luigi Nono
(1924-1990), Luciano Berio (1925-2003), Pierre Boulez
(1925-2016), and Karlheinz Stockhausen (1928-2007) were
drawn to explore its possibilities.

FIGURE 1. Example of markings on a tape splice.

In this context, the primary challenges arise from the
relatively short life expectancy of this medium (less than
20 years), in contrast to the longevity of conventional
tangible cultural heritage, which can endure for centuries
or even millennia. This situation calls for a transition to re-
recording these documents in digital form, ensuring their
preservation over time. Relying solely on audio copies,
however, is insufficient for preservation. Composers actively
engaged with the tape, employing techniques such as cutting
and pasting, adding annotations directly onto the medium
(as illustrated in Fig. 1). Some clues are essential for live
performances of the piece, while others, though not directly
impacting performance, hold significance from a philological
standpoint. Often, composers did not furnish a traditional
score; therefore, the tape itself becomes the artwork—the
culmination of the creative process. Preserving the tape in its
entirety is crucial to safeguarding the essence of the artistic
creation.

The integration of electronic and information technology
into art has presented fresh challenges for archives and the
preservation of cultural heritage. While technology serves as
a catalyst for innovative forms of artistic creation [2], it also
contributes to the accelerated deterioration and deprecation

of formats, thereby reducing the lifespan and accessibility of
new artworks.

Critical issues in this context include the compounded
sheer volume of material yet to be digitized and the variety
of adopted formats. The risks are twofold: firstly, the
lack of expertise in digitization may result in the loss of
information, and secondly, the limited storage space and
bandwidth available pose significant hurdles in the challenge
of preserving these archives for posterity [3]. Data analysis,
which may occur years after digitization, may highlight error
inconsistencies in audio documents that are no longer easily
accessible in the original format [4]. Overall, digitization
and data analysis represent a significant investment, requiring
considerable resources in terms of time, money, and technical
expertise [5], [6]. Naive implementations may jeopardize
the proper preservation and accessibility of cultural heritage,
making it unattainable.

These issues are addressed by the novel technology
outlined in the Moving Picture, Audio and Data Coding
by Artificial Intelligence (MPAI) international standard on
Audio Recording Preservation (ARP), later adopted as IEEE
3302-2022 [7]. Drawing extensively from contributions of the
Centro di Sonologia Computazionale (CSC) at the University
of Padua [8], [9], and leveraging considerable experience in
music production, the ARP approach revolves around a well-
defined scientific methodology anchored on two essential
pillars. Firstly, it adopts a multidisciplinary approach that
integrates perspectives from engineers, musicians, musi-
cologists, composers, and archivists. Secondly, it upholds
a profound commitment to philological accuracy in the
development of digital tools. This encompasses the inclusion
of metadata and ancillary information deemed crucial for
the comprehensive completion of preservation copies [10].
The datasets gathered at CSC were assembled from over
3000 documents digitized through numerous preservation
projects [11]. Notably, some of the most representative
restored and digitized collections include those from Luciano
Berio’s archive (Paul Sacher Stiftung, featuring tape music
and electronicmusic), the Luigi NonoArchive ofVenice (tape
music, electronic music), the Historical Archive of the Teatro
Regio of Parma (encompassing opera, Western classical
music, and pop/rock), the Tullia Magrini Archive (focused on
ethnomusic), the Historical Archive of the Maggio Musicale
Fiorentino (covering Opera andWestern classical music), and
the Fondazione Giorgio Cini of Venice (comprising speech
and oral sources).

The structure of this manuscript is as follows: Section II
briefly examines existing guidelines, relevant literature, and
solutions for audio document preservation, along with the
application of AI in music. Section III delves into the preser-
vation methodology forming the core of the ARP standard.
Section IV presents an in-depth overview of the foundational
infrastructure and novel technology underpinning ARP;
while Section V summarizes the performance results of the
various technology components adopted, concluding with
final remarks.
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II. STATE OF THE ART
To ensure the preservation of audio documents, it’s imper-
ative to establish internationally shared guidelines that set
preservation standards. These guidelines should encompass
a regulatory framework that addresses the various stages
of the preservation process, such as digitization, archiving,
and long-term preservation of audio documents. International
organizations, such as the International Association of
Sound and Audiovisual Archives (IASA) [12], [13] and
the International Federation of Library Associations and
Institutions (IFLA) [14] have contributed to the definition of
protocols aimed at guaranteeing the quality and sustainability
of preservation practices for diverse physical media. Such
guidelines, however, often inadequately describe the orga-
nization of digitized files, primarily focusing on the correct
practices for preserving and managing analog documents.
The organization of digitized files, encompassing metadata
and storage formats, demands meticulous planning to guar-
antee the long-term accessibility and integrity of the contents.
Hence, shared guidelines must comprehensively embrace the
evolving digital landscape, addressing the challenges and
best practices pertinent to preserving audiovisual documents
in digital formats. To tackle these challenges, the CSC has
proposed to MPAI a preservation methodology for audio
documents based on [15], elaborated in detail in Section III.
In recent years, numerous archives and private institutions

have embarked on extensive digitization projects. These
endeavors, however, often encounter the challenge of dig-
itizing a vast quantity of audiovisual documents within a
relatively short time frame, which can easily lead to errors
during the digitization process. The pressure to meet dead-
lines while handling such a large volume of materials may
result in oversights or mistakes, ultimately compromising the
quality and accuracy of the digitized records. Issues such as
incomplete signal transfers, mislabeled files, or inadequate
preservation of metadata may arise from these digitization
efforts. Therefore, archives must allocate sufficient time and
resources to minimize the risk of errors when digitizing
analog materials. In this regard, AI proves to be an invaluable
tool for improving both efficiency and accuracy in the
digitization process, addressing challenges related to the
quality of audio preservation and restoration [16], [17].

The integration of AI into the realm of music has begun to
revolutionize how artists, composers, and producers approach
music composition, creation, and production [18], [19].
AI’s ability to analyze extensive musical datasets [20],
discern patterns, and identify genres [21] empowers it to
generate new sounds. Artists can harness AI for inspiration,
crafting innovative melodies, and exploring unique sonic
landscapes. Moreover, in music production, AI can optimize
processes such as mixing and mastering [22], enhancing
and streamlining the overall workflow. Some AI-based tools
even facilitate automatic composition [23] of personalized
musical accompaniments or real-time adaptation of music to
listeners’ emotions. Alongside these creative opportunities,
however, concerns regarding ethics and artistic integrity

arise, particularly regarding AI’s potential to supplant the
human element in music creation and compromise artistic
authenticity. As of now, the use of AI in audio preser-
vation has remained relatively limited, primarily focusing
on speech restoration [24], [25], quality assessment of
digitized audio [17], and, only very recently, enhancing
historical recordings by utilizing inpainting [26] and band-
width extensions [27]. Although AI has found significant
applications in music creation, production, and enhancement,
its adoption in the preservation of historical audio recordings
and management of music archives is still in its very
early stages. Nowadays, archives are undergoing a digital
transformation and must harness automation, particularly
through AI, to effectively manage data [28], [29].

The primary challenge lies in the intricacy and sensitivity
of audio preservation, necessitating a meticulous and rev-
erent approach to maintain the quality and authenticity of
recordings over time. The research presented in this paper
concentrates on investigating novel applications of AI in the
conservation and restoration of audio recordings.

III. PRESERVATION METHODOLOGY
The adopted preservation methodology for audio documents
is illustrated in Fig. 2. The initial step of the methodology
involves photographing each audio document along with
its corresponding box to document its preservation status.
This information is crucial, as composers frequently made
annotations on the boxes, covering not only details about
the recording contents but also the adopted channel con-
figuration, equalization curve, and recording speed. While
the potential for misalignment between the content and
what is reported on the boxes exists, it still serves as a
valuable guideline. Visual inspection and pre-reading play
an important role in diagnosing evident mechanical issues or
identifying chemical/physical syndromes that may impact the
tape. These steps provide essential insights before proceeding
with the restoration process. Overall, the optimization of the
carrier includes fixing old splices through the original tape,
applying leader tape at the beginning, cleaning the surface to
remove mold and dust, and implementing thermal treatment
to address the Sticky-Shed/Soft Binder Syndrome [30].
The second step of the methodology concerns the A/D

conversion. To digitize the audio content, it is fundamental
to analyze and set the recording formats, digital parameters,
and playback configuration correctly. Monitoring the entire
A/D process is essential for preventing errors, such as the
misinterpretation of channel configuration and recording
speed. The digitization process is executed with high-
quality converters and fully operational analog devices. Video
documentation of the tape is also included to track any
irregularities that may be present on its surface.

The final step of the preservation methodology involves
data processing and the creation of Preservation and Access
Copies. The Preservation Copy comprises a high-quality dig-
ital audio file with audio stored at a minimum of 24 bits pre-
cision and a sampling rate of 96 kHz, without any restoration
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FIGURE 2. Diagram illustrating the preservation methodology.

or filters applied. In the case of multi-channel recordings,
a separate audio file is provided for each channel. Multiple
acquisitions are conductedwhen a tape is recorded at different
speeds, resulting in separate audio files. In addition to digital
audio files, the Preservation Copy incorporates photographic
and video documentation, checksums, and scanned images of
any accompanying documentation that may have been with
the original item. Metadata gathering plays a central role in
this process. Data regarding the original document, including
brand, reel diameter, channel configuration, recording speed,
etc., is stored in a dedicated database and summarized in a
.pdf file, which is also included in the Preservation Copy. The
Access Copy is typically provided in a compressed format,
such as MPEG AAC [31], [32], to enhance portability.

One of the most common challenges in digitizing analog
audio tapes is applying the correct equalization (EQ) curve.
EQ curves were employed during recording as pre-emphasis
to extend the dynamic range and enhance the Signal-to-Noise
Ratio (SNR). During playback, inverse post-emphasis curves
were applied to restore the original frequency response.
Identifying the correct EQ curve is a significant challenge,
particularly when dealing with tapes recorded in the early
days of sound recordingwhen there were no shared standards.
In certain instances, different record labels and/or even indi-
vidual techniciansmight have chosen to apply customized EQ
curves to improve sound quality or tailor it to the technical
characteristics of the equipment used at that time. The intro-
duction of standard EQ curves such as IEC1 [33] (formerly
known as CCIR) and IEC2 [34] (formerly known asNAB) has
streamlined this process, yet it does not entirely resolve the
issue. The digitization process remains complex, as it neces-
sitates identifying and correcting the EQ curves to ensure an
accurate and faithful reproduction of the original sound.

IV. CAE-ARP
The ARP technology is part of the MPAI-CAE interna-
tional standard (aka IEEE 3302-20221). MPAI/IEEE-CAE’s
pioneering specifications extend across a wide array of

1standards.ieee.org/ieee/3302/11006/ Last accessed June 27, 2024.

applications, including entertainment, communication, tele-
conferencing, gaming, post-production, preservation and
restoration [35]. MPAI/IEEE-CAE encompasses four distinct
use cases tailored to enhance the user’s audio experience
across various contexts, spanning different settings such
as the home, car, on-the-go, and studio. The four use
cases specified in the CAE standard are: 1) Emotion
Enhanced Speech (EES); 2) Audio Recording Preservation
(ARP); 3) Speech Restoration System (SRS); 4) Enhanced
Audioconference (EAE). These examples highlight the
versatility and comprehensive scope of MPAI/IEEE-CAE’s
innovative specifications, illustrating their adaptability to
various contexts and their ability to address a broad spectrum
of audio-related needs [35].

The foundational infrastructure enabling the implemen-
tation of MPAI-CAE is the MPAI AI Framework (AIF),
specified in the MPAI-AIF/IEEE 3301-2022 standard.2

This provides the operational backbone for executing AI
Workflows (AIW), which are constructed from fundamental
processing elements known as AI Modules (AIM). MPAI-
CAE normatively defines the semantics and syntax of input
and output data, the functions of the AIW and AIMs,
as well as the connections between AIMs within an AIW.
Interoperability is ensured by the ability to substitute an
AIW or AIM implementation with a functionally equivalent
one while maintaining correct input/output formats. MPAI-
CAE’s objective is to leverage this embedded structure to
enhance user experiences in audio-related applications.

The CAE-ARP technology stands as a groundbreaking
advancement in the accurate preservation of information
found in open-reel audio tapes. Through this process, not
only long-term preservation but also precise playback of
the digitized recording is ensured, with the capability for
restoration if needed. CAE-ARP leverages automated AI
processes to extract crucial information from digitized audio
files, facilitating the creation of preservation and access
copies. Operating within the framework of the CAE-ARP

2standards.ieee.org/ieee/3301/11096/ Last accessed June 27, 2024.
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FIGURE 3. MPAI/IEEE-CAE ARP AI Workflow [7].

standard, archives can efficiently manage the wealth of infor-
mation stored on tapes and their associated metadata. This
standardized approach enables the automated preparation of
content for immediate storage and/or utilization, streamlining
the archival process and enhancing accessibility.

The ARP AIW and its various components are illus-
trated in Fig. 3. The architecture of the ARP standard
comprises five AIMs designed to target and process distinct
digital inputs [36]. These include the Audio Analyzer,
Video Analyzer, Tape Irregularity Classifier, Tape Audio
Restoration, and Packager. Each AIM plays a specific role
in the overall processing and enhancement of audio content,
contributing to the comprehensive capabilities of the ARP
technology. Preserving audio assets recorded on analog
media holds significant importance, considering the valuable
information embedded in the magnetic tape of an open reel.
In addition to the audio signal, this information may include
annotations by the composer or technicians, multiple splices,
and various irregularities like carrier corruptions, different-
colored tapes, or diverse chemical compositions. The primary
ARP objectives are long-term preservation and the creation
of an access copy, which is restored if necessary, to facilitate
accessibility and correct playback of the digitized recording.
The ARP process takes as input the Preservation Audio File,
which is generated through the digitization of the analog
audio signal recorded on an open-reel tape with 24 bits per
audio sample and a sampling rate of 96 kHz. Furthermore,
an essential input to the ARP is the Preservation Audio-
Visual File, which amalgamates a video file generated by
a camera positioned at the playback head of the open-reel
tape machine, see Fig. 4, with the audio content digitized
at low resolution and synchronized with the video file. This
comprehensive input contributes to the preservation process,
ensuring that both audio and visual elements are accurately
captured and maintained. The first AIMs in the ARP AIW
(see Fig. 3), the Audio and Video Analyzers, analyze the
audio/video signals in order to detect irregularities (such as
Splice, Brands on tape, Start of tape, Ends of tape, Damaged
tape, Dirt, Marks, Shadows, Wow and flutter, Play, pause
and stop, Speed standard variation, Equalization standard
variation, Signal backward) and create an Irregularity File and
associated Audio and Image Files. These files feed into the
Tape Irregularity Classifier AIM which classifies and selects
the ones considered relevant. If the selected Irregularity was
detected by the Video Analyzer, in addition to the selected

Irregularity File, the corresponding Irregularity Images are
also sent to the Packager AIM. The Tape Audio Restoration
AIM uses the Irregularity File to identify and restore portions
of the Preservation Audio File. It corrects speed, equalization
and reading backwards errors in the Preservation Audio
File and sends the Restored Audio Files and an Editing
List to the Packager AIM. Finally, the Packager AIM
collects the Preservation Audio Files, Restored Audio Files,
the Editing List, the Irregularity File and corresponding
Irregularity Images, and the Preservation Audio-Visual File,
producing the Preservation Master Files. These files include
the Preservation Audio File, the Preservation Audio-Visual
File—where the original audio is replaced with a reduced-
resolution version fully synchronized with the video—the set
of Irregularity Images, and the Irregularity File. Additionally,
Access Copy Files are generated, which contain the Restored
Audio Files, Editing List, set of Irregularity Images, and the
Irregularity File.

In the following sections, we will provide an in-depth
description of the key technologies that are employed in
implementing the various MPAI-CAE ARP AIMs. Before
diving into the technical details, we will first offer an
overview of MPAI, an international, non-profit organization
committed to establishing standards for data coding based on
AI.

A. MPAI
Established in September 2020 in Geneva, MPAI is an
international standards organization committed to advanc-
ing the efficient utilization of data. Its mission involves
developing technical specifications across diverse fields [37],
encompassing Audio, Video, Neural NetworkWatermarking,
Human-Machine Interaction, Avatars, Metaverse, Real and
Virtual Environment Performance, Online Gaming, Financial
Data, and Health. MPAI operates at the forefront of
innovation, incorporating new technologies such as AI to
shape standards that address the evolving landscape of data-
related applications.

In its first three years of existence, MPAI has successfully
developed and released 9 standards, all of which are
publicly accessible on their website.3 Notably, 5 of these
standards have been officially adopted by the IEEE Standards
Association (IEEE SA), showcasing MPAI’s influence and
contribution to the broader standards community. Addition-
ally,MPAI continues towork on and hasmore standards in the
pipeline, underscoring its ongoing commitment to advancing
technological standards in various domains.

Apart from the technical specifications, MPAI has devel-
oped 3 reference software implementations, which are
publicly accessible as open source. Furthermore, MPAI has
released 2 conformance testing specifications publicly, offer-
ing valuable resources for evaluating adherence to standards.
Lastly, MPAI has introduced 1 performance assessment
specification, publicly available, that assesses factors such as

3mpai.community/standards/ Last accessed June 7, 2024.
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robustness, replicability, reliability, and fairness, providing
insights into the effectiveness and dependability of the
implemented standard.

For MPAI-CAE ARP, the technical specifications as well
as the conformance testing specifications and reference
software are available through theMPAI website.4 CAEARP
stands out as one of MPAI’s most successful technologies,
being recognized twice (in 2023 and in 2024) by the presti-
gious ‘‘Neurons Awards Creativity AI Trophy’’ at the World
Artificial Intelligence Cannes Festival (WAICF5), the world’s
largest artificial intelligence event.6

In the following sections, a comprehensive technical
description of the ARP AIMs is presented.

B. AIW ARCHITECTURE IMPLEMENTATION
The current infrastructure of ARP is implemented through
a set of docker containers that interact via the Remote Pro-
cedure Call (RPC) protocol (using gRPC implementation7)
and share a volume where to store the data. Each docker
container hosts a server with a module implementation and
exposes an API. This entire setup is managed by a client
that sends organized requests to the services and processes
their responses. More specifically, a common interface for
all ARP AIMs has been defined via Protocol Buffer (aka
Protobuf),8 which exposes a main method, called ‘‘work’’,
for starting data processing in each module and receiving
responses based on their current state. The Protobuf interface
is currently implemented in Python.

The code for this infrastructure implementation, alongwith
its documentation, is also available on Gitlab.9

C. VIDEO ANALYZER AND AUDIO ANALYZER
The first two AIMs within the ARP AIW, as illustrated in
Fig. 3, namely the Audio and Video Analyzers, are specif-
ically designed to detect tape irregularities and accurately
determine the exact moment at which these irregularities
occur. The input to the ARP standard comprises two distinct
files: a Preservation Audio File (PAF) obtained through the
high-quality digitization of the analog audio, encompassing
music, soundscape, or speech, recorded on the magnetic tape;
and a Preservation Audio-Visual File (PAVF) created by a
camera focused on the reading head of the magnetic tape
machine (see Fig. 4). Together, these files contribute to the
comprehensive preservation of both audio and visual aspects

4mpai.community/standards/mpai-cae/ Last accessed June 27, 2024.
5www.worldaicannes.com/en Last accessed June 27, 2024.
6Link to the 2023 results: web.archive.org/web/20231210130015/

www.worldaicannes.com/en/cannes-neurons; link to the 2024 results:
www.worldaicannes.com/en/cannes-neurons Last accessed June 27, 2024.

7grpc.io/ Last accessed June 27, 2024.
8protobuf.dev/ Last accessed June 27, 2024.
9The CAE-ARP reference software can be found at the follow-

ing link: experts.mpai.community/software/mpai-private/mpai-cae/arp/arp-
workflow Last accessed on June 27, 2024. A corresponding repository has
also been established on the University of Padua server publicly accessible
via the link: gitlab.dei.unipd.it/csc-research/arp-aiw. Last accessed on June
27, 2024.

of the magnetic tape content. The PAF plays a crucial role
in identifying any errors in the application of EQ curves,
tape speed, and reverse audio [38] and it is then processed
to be both restored and archived unaltered for philological
purposes. In addition, the PAVF proves valuable formanaging
metadata associated with the carrier and providing additional
information related to the context of the recording. This dual-
input approach enhances the accuracy and thoroughness of
the preservation process within the ARP standard.

1) VIDEO ANALYZER
A fundamental aspect of the Video Analyzer module is
the precise identification of Regions of Interest (ROIs).
Preliminary studies explored the application of background
subtraction algorithms, utilizing prior information to seg-
regate new elements from recurring ones. This approach,
however, exhibited limitations, primarily manifesting as false
positives due to variations in brightness, reel movement,
and undesired artifacts [4]. In response to these challenges,
a paradigm shift towards a scene framing-oriented approach
was undertaken. It was observed that anomalies consistently
exhibited a lack of vertical movement, appearing as small
clusters of points within the frame. The strategic decision
to focus on stationary elements, notably the capstan area
(including pinch roller) and reading head (see Fig. 4),
was made to serve as reference points for automatically
identifying pixel regions vulnerable to irregularities [39]. The
reading head, a pivotal component in tape recorders, proved
to be a salient reference point due to its inherent stationary
nature during playback. Coupled with the capstan area,
these components facilitated the establishment of reliable
stationary elements.

A thorough analysis of the central frame of the video
associated with the tape, which is assumed to be indicative
of a standard scenario, is carried out. After extracting the
image (with deinterlacing applied in the case of older PAL
videos), the positioning of ROIs is determined by seeking
correspondence within grayscale capstan and reading head
reference images. The process of element individuation
is accomplished using the well-established Generalized
Hough Transform [40], [41] and SURF [42] algorithms.
The transformation from RGB space to grayscale relies on
OpenCV [43], the library employed in the implementation
for image processing, which defines the conversion rule as
follows:

RGB[A] to Gray: Y ← 0.299 · R+ 0.587 · G+ 0.114 · B

Once ROIs are identified, the Video Analyzer proceeds
to detect irregularities within the digitized magnetic tape
images. This is accomplished by examining the absolute
value of the differences between consecutive frames in
grayscale. Specifically, the function defined by Equation 1
generates a new grayscale image of the tape based on the
difference between consecutive input frames.

D(i, j) = |C(i, j)− P(i, j)| (1)
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FIGURE 4. Tape machine reading head and capstan area.

where i = 1, . . . , n and n is the number of rows in the
matrix, j = 1, . . . ,m and m is the number of columns in
the matrix, matrix D is the difference frame, C is the current
frame matrix and P is the previous frame matrix in grayscale.

TABLE 1. Standard deviation S based on tape’s speed.

Given the tape’s potential color variations, the standard
deviation of the difference image’s color is considered to
enhance algorithm stability in the presence of color and
brightness fluctuations. Instead of merely using the mean,
both mean and standard deviation of the pixel color in
grayscale are computed using Equations 2 and 3, respectively.
These metrics are then compared with the estimated standard
deviation S based on the tape’s speed, as summarized
in Table 1, where the estimated standard deviation has
been calculated through empirical tests. The tests involved
examining 30 video frames without irregularities for each
considered tape speed. For each frame, the mean color value
was calculated, and subsequently, the mean and standard
deviation were computed.

The following two equations are defined to calculate the
mean and standard deviation of the pixel’s color (in grayscale,
so a single 8-bit channel) of an image D of dimension m× n:

µ =
1
mn

m−1∑
i=0

n−1∑
j=0

D(i, j) (2)

σ =

√√√√√ 1
mn

m−1∑
i=0

n−1∑
j=0

(
D(i, j)− µ

)2 (3)

where D(i, j),m, n have the same meaning as defined in
Equation 1.

When σ < S, it indicates that the colors in the image show
minimal visible variation, implying that the difference image
does not contain any anomalies. Conversely, for irregular
difference images, the Otsu thresholding method [44], [45]
is applied to define a threshold T for converting the image to
a binary format using Equation 4 and Equation 5 below.

T = argmaxt {σ 2
B(t) · wB(t)+ σ 2

F (t) · wF (t)} (4)

where σ 2
B(t) is the weighted variance of the class above the

threshold, wB(t) is the probability of the class above the
threshold, σ 2

F (t) is the weighted variance of the class below
the threshold and wF (t) is the probability of the class below
the threshold. Thresholding is then applied to the image using
Equation 5 below.

B(i, j) =

{
1 if D(i, j) ≥ T
0 otherwise

(5)

where B is the binary image obtained after thresholding.
A denoising function is then applied to highlight irregular-

ity shapes through opening operations (erosion and dilation)
with a 3 × 3 rectangular kernel, as described in Equation 6
below.

O(i, j) = B(i, j) ◦ SE = (B(i, j)⊖ SE)⊕ SE (6)

where SE is the structuring element defined as a 3×3 square
matrix and ⊖/⊕ are the morphological image processing
erosion/dilation operators.

After this process thematrixO(i, j) should contain a clearer
shape of the irregularity. The count of white pixels in the
resulting image is computed, and if it exceeds 5% of the
image’s area, a significant difference between consecutive
frames is inferred. Equation 7 summarizes the decision
process: if the area of difference in the image exceeds a fixed
threshold, it is considered an irregularity.

I =

 1 if
∑m

i=0

∑n

j=0
O(i, j) >

m× n× 5
100

0 otherwise
(7)

At the end of the detection process, the frames in which an
irregularity was found are stored as Irregularity Images along
with their timestamp and a unique id in a JSON file called
IrregularityFile.

FIGURE 5. Block diagram of the audio analyzer module.

2) AUDIO ANALYZER
The Audio Analyzer AIM is responsible for carrying out a
spectral analysis of the Preservation Audio File, identifying
playback equalization requirements, detecting tape speed
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errors and computing the cross-correlation between the high-
quality preservation audio track and the lower-resolution
audio track in the associated video file. This process is
vital for achieving synchronization between the Preservation
Audio File and the Preservation Audio-Visual File, ensuring
the alignment and coherence of the audio components during
the preservation process. Building on the approach outlined
in [36], which utilized a single classifier to identify all
audio irregularities, this paper introduces a novel method
that divides signal classification into three distinct phases.
In the first two phases, machine learning methods are
employed to respectively recognize equalization curves and
reading/writing tape speeds. The third phase focuses on
computing the signal cross-correlation between the audio
and video components. This approach enhances efficiency
and accuracy in handling the diverse aspects of signal
irregularities detected during the preservation process.

Expanding on prior research detailed in [46] and [47],
our current spectral analysis utilizes the first 13 Mel-
Frequency Cepstral Coefficients (MFCCs) to represent audio
for equalization classification (see lower part of Fig. 5). This
representation proves to be a suitable approximation of the
signal for the task of equalization classification. Given the
significant variability of the content recorded on the tape,
we decided to adhere to prior research by concentrating
the analysis solely on segments of silence on the tape, i.e.,
portion of the signal with intensity below−50 dBFS. Silence,
as defined in [47], where empirical findings indicate that
audio signals with intensities ranging from−50 to−63 dBFS
represent silence between spoken words, from −63 to
−69 dBFS represent noise resulting from the recording head
without input, and below −69 dBFS represent noise from
sections of pristine tape, tends to produce more consistent
results when employed for classification, as opposed to
analyzing the entire signal present on the tape. The dataset
under analysis comprises 9328 audio segments, each lasting
500 ms and featuring intensities below −50 dBFS. From
these segments, the first 13 Mel-Frequency Cepstral Coef-
ficients (MFCCs) are extracted and then normalized. These
segments are part of a collection of 25 audio tape recordings,
designed to encompass every possible configuration of IEC1
and IEC2 equalization curves at different tape speeds. These
tapes were digitized at a sampling rate of 96 kHz and
a sample precision of 24 bits. The classification process
involved the dataset preparation, the model selection and an
assessment over the validation set. The performance of all
the models has been validated and tested using a K -Fold
cross-validation with K = 5 and a 80, 20 train-test dataset
split. Numerous experiments were conducted performing grid
search cross-validation over K-Nearest Neighbour (KNN),
Random Forest Classifiers (RFC), Support Vector Machines
(SVM) and Gradient Boosting (XGB) to tune the algorithms
hyperparameters and a Deep Neural Networks (DNN) whose
structure is described in the following paragraphs. All models
were trained and validated using the same dataset to select the

most effective model. As illustrated in Table 2, the best results
over the test set were achieved using DNNs.

TABLE 2. Models scores over validation set in EQ recognition.

Fig. 6 presents a comparative analysis of the five
classification models, the performance metrics displayed
include training and validation accuracy as well as loss,
plotted against key hyperparameters for each model. In the
KNN model, the training accuracy remains at a perfect
score of 1.00 across all neighbor counts, indicating potential
overfitting. The validation accuracy hovers around 0.80,
showing minor improvements with increasing neighbors,
while the validation loss decreases significantly before
stabilizing. The SVM model shows that by increasing
the regularization parameter C we have an increase in
both training and validation accuracy, reaching a peak at
around 0.95 and 0.88 respectively. The corresponding loss
metrics reflect this trend, stabilizing at lower values as C
increases. The Random Forest model maintains a perfect
training accuracy of 1.00 regardless of the number of
estimators, while the validation accuracy fluctuates slightly
around 0.84. This model’s loss metrics remain consistently
low, suggesting limited generalization improvement with
additional estimators. XGB starts with high training accuracy
and shows marginal improvements over iterations. However,
its validation accuracy improves only slightly, leveling off
around 0.87, with the validation loss indicating potential
overfitting after initial iterations. Notably, the DNN model
exhibits the highest validation accuracy, stabilizing around
0.90, with a corresponding decrease in validation loss
over epochs. The training metrics for DNN also show
rapid improvement, achieving around 0.95 accuracy, which
suggests a strong ability to generalize to unseen data. Overall,
the DNNmodel outperforms the other models, demonstrating
its superiority for the given classification task, as evidenced
by its balance between high validation accuracy and stable
loss metrics.

The DNN architecture used in this study was designed
and tuned following an empirical pre-evaluation stage, during
which the number of layers, neurons, and activation functions
were selected based on initial observations. Leaky ReLU
has been chosen over standard ReLU as it showed better
performance during this phase. The hidden layers follow a
typical structure in which the number of neurons decreases
progressively with depth. However, instead of consistently
reducing the number of neurons in each layer, it was decided
to repeat the number of neurons in consecutive layers, which
yielded better results in the initial evaluation. Given the strong
performance of the chosen architecture, further detailed
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FIGURE 6. Training and validation accuracy and loss for five different EQ classifier models versus key hyperparameters.

analysis and grid search for hyperparameter optimization
were deemed unnecessary.

The final neural network architecture consists of eleven
fully connected layers implementing a standard feedforward
multilayer perceptron neural network as described in [48].
The input layer matches the dimensions of the input data,
followed by two layers each containing 128 neurons, two
layers with 64 neurons, two layers with 32 neurons, two layers
with 16 neurons, and two layers with 8 neurons. A dropout
layer is included tomitigate overfitting, followed by an output
layer comprising three neurons. The network encompasses
approximately 37,000 parameters in total. Activation func-
tions employed within layers containing 128, 64, 32, 16,
and 8 neurons consist of Leaky ReLU, complemented by
batch normalization techniques to counteract potential issues
arising from vanishing gradients. A detailed layer by layer
summary of the neural network parameters can be found in
Table 3.
The model was trained using the Adam optimizer with an

adjustable learning rate starting from 0.01 that was halved
with a patience of 5 epochs to prevent local minimum stasis.
The batch size was set to 256, and the training was conducted
for 100 epochs. Early stopping was implemented with a
patience of 10 epochs to prevent overfitting. Dropout with a
rate of 0.3 was applied after the penultimate layer to further
mitigate overfitting. Categorical cross-entropy was used as
the loss function.

Loss and accuracy metrics derived from the validation
and training datasets are presented in Fig. 6. Notably, the
absence of conspicuous overfitting is evident, as indicated
by the consistent behavior of the validation curve across
epochs. However, it is discernible from the figure that the

TABLE 3. EQ classifier DNN model architecture layer by layer. µ is the
momentum parameter of the batch normalization layers, while α is the
slope of the leaky ReLU activation function for negative argument.

model performance tends to plateau after a certain number
of epochs. Consequently, the number of training epochs has
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been constrained to 50 epochs to optimize computational
efficiency while maintaining satisfactory performance levels.

A final evaluation of the model on the test set can be
conducted by examining the confusion matrix in Fig. 7 and
Fig. 8. The results indicate that, generally, when the classifier
produces an incorrect result, it tends to misidentify digitized
tapes with different pre- and post-emphasis equalization
applied during recording and playback as correctly processed
tapes.

It is important to note that, in this phase, the individual
500ms audio segments are treated separately. The subsequent
modules of the ARP AIW are responsible for aggregating the
information, which should help mitigate the issue of incorrect
classification results later in the ARP AIW.

In fact, a single classification error in the midst of a
sequence of correctly classified segments does not signifi-
cantly impact the overall outcome of the preservation process.

The audio playback speed detection algorithm is based
upon the analysis of spectrogram images of various audio
files (see upper part of Fig. 5). These images provide a visual
representation of the variations of the audio spectrum over
time.

FIGURE 7. EQ classifier normalized confusion matrix evaluating
performance over the test set, ‘‘same’’ label means that writing and
reading equalization were the same, n2c means that the tape has been
read in IEC1 and written in IEC2, while c2n is the opposite.

To assess the speed detection algorithm, a dataset of
300 audio files was selected to encompass sounds with a
wide variety of spectral characteristics. The audio files are
categorized into different groups: those with correct playback
speed and those with speed variations. Since tape speed varies
by factors of 2, the speed changes have been labeled with
relative changes rather than absolute values. In other words,
an audio file with a change in speed from 3.75 ips to 7.5 ips is
in the same category (double) as an audio file with a change
in speed from 7.5 to 15 ips. The same applies for halving the
speed. Since the most common speeds used in professional
audio recordings are 3.75, 7.5, 15 ips, the identified categories
are: double when the tape is read at double the writing speed,
half when the tape is read at half the writing speed writing,

FIGURE 8. EQ classifier unnormalized form confusion matrix evaluating
performance over the test set, ‘‘same’’ label means that writing and
reading equalization were the same, n2c means that the tape has been
read in IEC1 and written in IEC2, while c2n is the opposite.

quarter if the tape is read at a quarter of the writing speed and
quadruple as the reciprocal of the previous case.

The audio spectrogram images, similar to those shown
in Fig. 9, were extracted separately for each audio channel.
Initially, the spectrogram of the entire audio file was
generated and then split into chunks of 1 s duration in
grayscale at 8 bits, with dimensions of 256 × 128 pixels.
Additionally, durations of 250 ms (64 × 128 pixels) and
500ms (128×128 pixels) were tested, but they yielded poorer
results as displayed in Table 4.

To minimize errors, the speed classification task has been
divided into two stages. The first is a binary classifier
that determines if the tape is correctly played or not.
The second classifier is activated only in case of anomaly
detection and is used to determine the error class (double,
half, quarter, quadruple). Both stages utilize Convolutional
Neural Network (CNN) models. The two models share the
same structure, apart from the last layer responsible for
outputting the predicted label. Each model comprises three
convolutional layers with a kernel size of 7 × 7 and a
ReLU activation function. The layers differ in the number of
neurons, progressively increasing from 8 to 16, and finally to
32. Each convolutional layer is followed by a max pooling
layer with kernel 5 × 5. After these layers, a global average
pooling is performed, and its output connects to a dense layer
of size 32, always with a ReLU activation function. The final
layer consists of 2 neurons for the binary classifier, activated
with the sigmoid function, and 4 neurons for the multi-class
classifier, using the softmax activation function. A detailed
schema of the convolutional neural network architecture can
be found in Fig. 10.

The CNN architecture was chosen following an empirical
pre-evaluation phase, during which various configurations of
layers, neurons, kernel types, and activation functions were
explored. Like the approach used for the DNN, these initial
tests identified the current configuration as offering the best
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FIGURE 9. Audio spectrogram images showing drum tape recordings
played back at the correct speed, 15 ips (left), and at a quarter of the
correct speed, 3.75 ips (right).

TABLE 4. Model scores for audio segments with varying durations.

balance between performance and accuracy. The architecture
closely resembles standard CNN designs, incorporating the
typical progression of convolutional layers with increasing
neurons, max pooling for dimensionality reduction, and
ReLU activations for nonlinearity. This effective combination
of simplicity and performance rendered further analysis and
tuning unnecessary, as the selected setup already produced
excellent results.

The model was trained using the Adam optimizer with
a learning rate of 0.01. The batch size was set to 64, and
the training was conducted for 50 epochs. Early stopping
was implemented with a patience of 10 epochs to prevent
overfitting. Dropout with a rate of 0.3 was applied after the
penultimate layer to further mitigate overfitting. Categorical
cross-entropy was used as the loss function in the case of
multiclass model, while binary cross-entropywas used for the
binary model. To evaluate the performance of the playback
speed detection models, extensive testing and validation were
conducted using a diverse set of audio recordings with known
speed variations. Both stages achieved impressive accuracy
scores, with precision, recall, and F1-score values exceeding
98% on the validation set, while the test set gave a noticeable
performance drop of around 85%.

As illustrated in Fig. 5, the output of the Audio Analyzer
consists of the Irregularity File, which includes detected
irregularities metadata collected in a single JSON file.

D. TAPE IRREGULARITY CLASSIFIER
The Tape Irregularity Classifier is designed to verify and
merge, if necessary, the irregularities received as input
from the Audio and Video Analyzer AIMs through the
irregularity files (see Fig. 14). It utilizes a CNN model
tailored specifically for analyzing irregularities extracted
from video data and consolidates the classifications related
to the individual audio chunks.

In the current implementation the Classifier CNN model
is trained to recognize three classes of Irregularities on the
tape: Splices, Brands, and Shadows. While splices constitute
the primary focus in video analysis, brands and shadows
serve to accommodate detections made by the video analyzer
that are not strictly content-related. Brands marks on the
tape, though prevalent, lack relevance to audio and metadata
content. While they recur consistently throughout the tape,
the brand information is stored only once, with subsequent
brand images segregated into a distinct folder and excluded
from the irregularity file. Shadows, conversely, may arise
due to specific lighting conditions or irregularities on the
tape surface. The latter scenario is of paramount importance
in preservation endeavors, necessitating the retention of
shadows as irregularities in the Irregularity File to prevent
information loss.

Initially, our approach involved leveraging transfer learn-
ing by fine-tuning a pre-trained model based on EfficientNet
B0 [49], which has shown effectiveness across various com-
puter vision tasks. The classifier architecture consists of an
input layer accepting 224× 224 pixel color images, followed
by convolutional layers with frozen weights responsible for
extracting relevant features from the input data. A Global
Average Pooling layer combined with a dense layer forms
the output, with the number of neurons in the dense layer
corresponding to the number of irregularity classes to be
recognized (in this instance, n = 3). Notably, the EfficientNet
model accepts images with 8-bit values instead of pixel values
scaled between 0 and 1.

TABLE 5. Models scores over test set in Irregularity images recognition.

In addition to the initial approach that leveraged transfer
learning with the EfficientNet architecture, we conducted
another experiment using an adapted version of the CNN
architecture designed for the speed detection algorithm
as detailed in the preceding section. The former showed
excellent results in both training and validation, achieving
approximately 99% accuracy. Its performance, however,
dropped by approximately 10% on the test set, suggesting
potential overfitting. In contrast, the latter model, with
slightly lower accuracy during training and validation (around
97%), demonstrated better generalization on the test set with
an accuracy of nearly 96%. The summarized results can be
found in Table 5.

This indicates that the custom CNN architecture provides
more stable performance, underscoring its potential for
broader applicability in analyzing tape irregularities. In fact,
as shown in Fig. 11, EfficientNet’s accuracy on the validation
set tends to overfit from the early epochs. In contrast, the
accuracy scores of the custom CNN model for the Speed
Classifier exhibit slightly more variability across epochs
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FIGURE 10. CNN model architecture for speed classification.

FIGURE 11. Tape irregularity classifier training curve.

but demonstrate consistent improvement as the number of
training epochs increases.

The training dataset comprises Irregularity Images corre-
sponding to each class. The training set is partitioned into
80% for training and 20% for validation. Subsequently, the
model undergoes testing on Irregularity Images detected from
recently digitized magnetic audio tapes, ensuring evaluation
on a distinct set of images not encountered during training.
This approach facilitates assessing the model’s ability to gen-
eralize to unseen data and accurately identify irregularities
across disparate sources. The dataset, overall, exhibits slight
class imbalance, with splices comprising approximately
800 images, while brands and shadows each contain around
600 images. Following 20 epochs of training, the model
demonstrates notable efficacy, achieving a 97% accuracy over
the validation dataset, indicative of its adeptness in discerning
patterns associated with splices, brands, and shadows within
the provided dataset.

Looking at the confusion matrix of the model (see Fig. 12
and Fig. 13), no particular class imbalances emerge in the
results, Brands and Splices are the classes that reap the
greatest successes, while Shadows are occasionally confused
with the other classes.

Upon completion of the irregularities selection and aggre-
gation process, the Tape Irregularities Classifier AIM shares
the chosen Irregularity Images (along with their metadata)
with the Packager. Simultaneously, the aggregated audio
irregularities are transmitted to the Tape Audio Restoration
AIM to allow the generation of a restored Access Copy. The
specific data flow is depicted in Fig. 14.

FIGURE 12. Tape irregularity classifier normalized confusion matrix
evaluation performance over test set.

FIGURE 13. Tape irregularity classifier unnormalized form confusion
matrix evaluation performance over test set.

E. TAPE AUDIO RESTORATION
The Tape Audio Restoration AIM tackles audio irregularities
by rectifying time-reversed segments, conducting sampling
rate conversion for accurate playback speed, and applying
equalization correction curves in areas identified by the
Irregularity File. Inputs to this AIM include the Irregularity
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FIGURE 14. Tape irregularity classifier data flow.

File and the Preservation Audio File. The resulting Restored
Audio Files guarantee the appropriate playback of the
original audio content.

The correction of speed happens through resamplingwhere
the new sample rate (sr) is computed as follows: srnew = srold
speed writing speed reading. Then, the equalization correc-
tion is performed by applying a filter composed of the inverse
of the incorrect curve used during the digitization process
and the correct equalization curve (the overall workflow is
described in [50]):

srnew = srold
speedwriting
speedreading

(8)

Finally, the correction of reversed audio is implemented by
simply reversing in time the order of the audio samples based
on the starting and ending points of the detected irregularity.

F. PACKAGER
Once all the metadata, magnetic tape images, and restored
audio segments are obtained, it is crucial to provide easily
accessible and searchable files. The Packager AIM is
responsible for this task, receiving all the materials generated
by the other AIMs and organizing them into folders. One
folder is designated for storing a philological copy of the tape
(audio and video, synchronized, in high resolution without
any corrections) along with the metadata of the identified
irregularities (Preservation Master Files). Another folder is
created to provide access to a (potentially) restored audio
file, sometimes in a compressed format, making it easy to
download and play on various devices (Access Copy Files).

V. CONCLUSION
This paper presented the innovative technology integrated
into the MPAI/IEEE CAE-ARP standard, showcasing excep-
tional results in the digital preservation and restoration of
magnetic tapes. The test outcomes for the Tape Irregularity
Classifier AIM reveal that custom neural network archi-
tectures remain relevant and can effectively compete with
established CNNs. This indicates that task-specific models
can outperform more general ones in certain scenarios.
Following rigorous training and testing, the Tape Irregularity
Classifier achieves an impressive 96% accuracy on the test

dataset, demonstrating its ability to generalize to new data
and accurately detect irregularities across various sources.
Moreover, the classifier’s robustness is evident in its equitable
handling of class imbalances within the dataset, ensuring
unbiased recognition of different irregularity types.

Similarly, the Audio and Video Analyzer AIMs demon-
strate exceptional performance in identifying and charac-
terizing tape irregularities. The Video Analyzer, employing
sophisticated techniques such as ROI identification and
difference frame analysis, accurately detects anomalies while
mitigating false positives arising from environmental varia-
tions. By focusing the video on stationary elements in the tape
playback system and employing advanced image processing
algorithms, the Video Analyzer ensures reliable identification
of irregularities, essential for preserving valuable annotations
stored on magnetic tapes. The Audio Analyzer AIM,
employingmeticulous feature extraction andmodel selection,
attains exceptional performance in identifying equalization
curves and playback speeds. This highlights the model’s
ability to classify audio irregularities with high accuracy,
thereby aiding in the comprehensive preservation of audio
content archived on magnetic tapes.

Standards and their implementations evolve over time
following the new possibilities provided by emerging
technologies. The MPAI/IEEE community is continually
reassessing and updating its standards by incorporating
new state-of-the-art approaches. In the specific case of the
MPAI/IEEE CAE-ARP standard, new pre-trained models
could further enhance the overall performance of audio
preservation and restoration tasks, leading to improved
accuracy and efficiency in handling diverse audio signals.
We are currently furthering the ARP development by
designing new algorithms to automatically identify and
correct backwards-recorded sections in digitized open-reel
tapes, as well as improving the detection of speed variations
by including lower and higher playback speeds. Future work
will also target the overall performance of the algorithms,
towards the development of a real-time system. Last but
not least, an expanded dataset featuring additional types of
irregularities (for both audio and video content) and various
musical genres (such as pop music, opera, and non-Western
traditional music) could positively impact the system. This
would enable broader use of the tool while enhancing its
reliability and overall performance.

In conclusion, the advanced technology integrated into the
ARP standard offers effective solutions for detecting and
characterizing irregularities, contributing to the preservation
of valuable audio records. Adoption of the CAE-ARP
standard empowers archives to efficiently identify and rectify
errors in various audio files, improving the quality and
accuracy of preservation and access copies, streamlining
archiving processes, and ensuring interoperability through
standardized digital file formats. The ARP standard marks a
significant advancement in the preservation of audio cultural
heritage, ensuring its enduring accessibility and usability, and
paving the way for future developments in this critical field.
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